Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210346327> ?p ?o ?g. }
- W4210346327 endingPage "177" @default.
- W4210346327 startingPage "160" @default.
- W4210346327 abstract "Abstract Porphyry-type Mo deposits have supplied most of the Mo to the world. However, the source of the Mo and the controls on its enrichment in such deposits is still a matter of great debate. In this study, we present in situ trace element and isotopic data for a giant porphyry Mo deposit (the Chalukou Mo deposit in NE China) and use these data to address these issues. Three primary paragenetic stages of mineralization were recognized at Chalukou: (Stage I) K-feldspar + quartz + minor pyrite (Py-I) + minor molybdenite (Mol-I); (Stage II) quartz + sericite + molybdenite (Mol-II) + pyrite (Py-II); (Stage III) quartz + chlorite + epidote + fluorite + pyrite (Py-III) + galena + sphalerite + minor chalcopyrite. The bulk of the molybdenite was deposited in Stage II. In situ S isotope analyses of the sulfide ores show that the δ34S values vary from –5.2 to +7.8‰ (mean = +2.9‰) and correspond to δ34SH2S values from –2.4 to +3.3‰ (mean = +1.1‰). These values are consistent with a magmatic source for the sulfur. In situ Pb isotope compositions of the sulfide ores are almost identical to those of the local Mesozoic granites and other magmatic-hydrothermal ore deposits in this region, suggesting a close genetic association between the Mo mineralization and felsic magmatism. Pyrite from the three stages of mineralization differs significantly in its trace element composition. The first generation, Py-I, has a high Cu content (8.7 ± 49.6 ppm; where the first value is the median and the second is the standard deviation) and Mo content (6.9 ± 3.8 ppm). Pyrite-II has the lowest Cu concentration (1.3 ± 2.1 ppm) and a relatively high Mo concentration (5 ± 128 ppm), and Py-III has a high Cu content (8.7 ± 37.1 ppm) but the lowest Mo content (0.05 ± 5.7 ppm). From this, we infer that pyrite recorded the chemical evolution in the Mo/Cu ratio of the ore fluid and that this ratio reached a maximum in Stage II, coinciding with the widespread saturation of the fluid in molybdenite. The evolution of the Mo/Cu ratio in pyrite implies that the fluid was undersaturated in chalcopyrite at the high temperature of Stage I, despite the Cu concentration of the fluid apparently being at its high level, and chalcopyrite only saturated later, at a lower temperature. Molybdenite, however, because of its lower solubility, saturated early (Stage I) and in the subsequent stage (Stage II) was supersaturated in the fluid. There is a significant enrichment of Mo in the syn-ore intrusions at Chalukou compared to the pre-ore monzogranite. The very low Sr/Y ratios for the Chalukou syn-ore intrusions, which are in sharp contrast to the high Sr/Y ratios of the pre-ore monzogranite and those of porphyries related to Cu deposits, suggest that fractional crystallization of plagioclase may have been a key factor in generating the syn-ore magmas. Molybdenum is a highly incompatible metal and will concentrate in the crust, and assimilation of old continental crust, therefore, may explain the Mo enrichment of the syn-ore intrusions and ultimately the formation of the giant Chalukou deposit." @default.
- W4210346327 created "2022-02-08" @default.
- W4210346327 creator A5014359312 @default.
- W4210346327 creator A5030814492 @default.
- W4210346327 creator A5043727060 @default.
- W4210346327 creator A5082045728 @default.
- W4210346327 date "2023-01-03" @default.
- W4210346327 modified "2023-10-02" @default.
- W4210346327 title "Trace element and isotopic (S, Pb) constraints on the formation of the giant Chalukou porphyry Mo deposit, NE China" @default.
- W4210346327 cites W1692340778 @default.
- W4210346327 cites W1965472092 @default.
- W4210346327 cites W1967437614 @default.
- W4210346327 cites W1967827341 @default.
- W4210346327 cites W1970621049 @default.
- W4210346327 cites W1971072568 @default.
- W4210346327 cites W1977271818 @default.
- W4210346327 cites W1982133624 @default.
- W4210346327 cites W1984112525 @default.
- W4210346327 cites W1985696630 @default.
- W4210346327 cites W1988341539 @default.
- W4210346327 cites W1992781439 @default.
- W4210346327 cites W2008073536 @default.
- W4210346327 cites W2008575948 @default.
- W4210346327 cites W2011599012 @default.
- W4210346327 cites W2017605458 @default.
- W4210346327 cites W2025630980 @default.
- W4210346327 cites W2030139888 @default.
- W4210346327 cites W2036723886 @default.
- W4210346327 cites W2039405518 @default.
- W4210346327 cites W2040331273 @default.
- W4210346327 cites W2044512571 @default.
- W4210346327 cites W2045266745 @default.
- W4210346327 cites W2045300556 @default.
- W4210346327 cites W2063035016 @default.
- W4210346327 cites W2063207193 @default.
- W4210346327 cites W2071386916 @default.
- W4210346327 cites W2072481433 @default.
- W4210346327 cites W2072664369 @default.
- W4210346327 cites W2072674126 @default.
- W4210346327 cites W2072976733 @default.
- W4210346327 cites W2075236405 @default.
- W4210346327 cites W2081632630 @default.
- W4210346327 cites W2082652451 @default.
- W4210346327 cites W2100168657 @default.
- W4210346327 cites W2110609253 @default.
- W4210346327 cites W2132111359 @default.
- W4210346327 cites W2132595765 @default.
- W4210346327 cites W2154045529 @default.
- W4210346327 cites W2154269282 @default.
- W4210346327 cites W2154628848 @default.
- W4210346327 cites W2162722256 @default.
- W4210346327 cites W2163044580 @default.
- W4210346327 cites W2165394332 @default.
- W4210346327 cites W2169156998 @default.
- W4210346327 cites W2219974153 @default.
- W4210346327 cites W2229122851 @default.
- W4210346327 cites W2308311779 @default.
- W4210346327 cites W2313729349 @default.
- W4210346327 cites W2324896590 @default.
- W4210346327 cites W2337448082 @default.
- W4210346327 cites W2344284241 @default.
- W4210346327 cites W2403151139 @default.
- W4210346327 cites W2487986838 @default.
- W4210346327 cites W2528077978 @default.
- W4210346327 cites W2528431995 @default.
- W4210346327 cites W2570946139 @default.
- W4210346327 cites W2618416330 @default.
- W4210346327 cites W2714290532 @default.
- W4210346327 cites W2739757303 @default.
- W4210346327 cites W2765650602 @default.
- W4210346327 cites W2769246748 @default.
- W4210346327 cites W2777512320 @default.
- W4210346327 cites W2781532127 @default.
- W4210346327 cites W2790179311 @default.
- W4210346327 cites W2795825890 @default.
- W4210346327 cites W2796899699 @default.
- W4210346327 cites W2803088589 @default.
- W4210346327 cites W2808044838 @default.
- W4210346327 cites W2910944259 @default.
- W4210346327 cites W2936543743 @default.
- W4210346327 cites W2942292243 @default.
- W4210346327 cites W2973483249 @default.
- W4210346327 cites W2980108855 @default.
- W4210346327 cites W2995196881 @default.
- W4210346327 cites W3019317335 @default.
- W4210346327 cites W3083077467 @default.
- W4210346327 cites W3129503532 @default.
- W4210346327 cites W3133462594 @default.
- W4210346327 cites W3148708686 @default.
- W4210346327 cites W3202596277 @default.
- W4210346327 doi "https://doi.org/10.2138/am-2022-8142" @default.
- W4210346327 hasPublicationYear "2023" @default.
- W4210346327 type Work @default.
- W4210346327 citedByCount "3" @default.
- W4210346327 countsByYear W42103463272023 @default.
- W4210346327 crossrefType "journal-article" @default.
- W4210346327 hasAuthorship W4210346327A5014359312 @default.
- W4210346327 hasAuthorship W4210346327A5030814492 @default.