Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210361383> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4210361383 endingPage "257" @default.
- W4210361383 startingPage "247" @default.
- W4210361383 abstract "Recently, the COVID-19 pandemic is considered the most severe infectious disease because of its rapid spreading. Radiologists still lack sufficient knowledge and experience for accurate and fast detecting COVID-19. What exacerbates things is the significant overlap between Pneumonia symptoms and COVID-19, which confuses the radiologists. It’s widely agreed that the early detection of the infected patient increases his likelihood of recovery. Chest X-ray images are considered the cheapest radiology images, and their devices are available widely. This study introduces an effective Deep Convolutional Neural Network (DCNN) called “DeepChest” for fast and accurate detection for both COVID-19 and Pneumonia in chest X-ray images. “DeepChest” runs with a small number of convolutional layers, a small number of max-pooling layers, and a small number of training iterations compared with the recent approaches and the state-of-the-art of DCNN. We conducted the experimental evaluations of the proposed approach on a data set with 7512 chest X-ray images. The proposed approach achieves an accuracy of 96.56% overall, 99.40% in detecting COVID-19, and 99.32% in detecting Pneumonia. In actual practice, the presented approach can be used as a computer-aided diagnosis tool to get accurate results in detecting Pneumonia and COVID-19 in chest X-ray images." @default.
- W4210361383 created "2022-02-08" @default.
- W4210361383 creator A5011131828 @default.
- W4210361383 creator A5034813320 @default.
- W4210361383 creator A5074714159 @default.
- W4210361383 date "2022-07-01" @default.
- W4210361383 modified "2023-10-06" @default.
- W4210361383 title "Efficient framework for detecting COVID-19 and pneumonia from chest X-ray using deep convolutional network" @default.
- W4210361383 cites W1570613334 @default.
- W4210361383 cites W1832115302 @default.
- W4210361383 cites W1982471090 @default.
- W4210361383 cites W2097073572 @default.
- W4210361383 cites W2108598243 @default.
- W4210361383 cites W2117539524 @default.
- W4210361383 cites W2153627206 @default.
- W4210361383 cites W2165698076 @default.
- W4210361383 cites W2175568660 @default.
- W4210361383 cites W2565516711 @default.
- W4210361383 cites W2592929672 @default.
- W4210361383 cites W2727650337 @default.
- W4210361383 cites W2888397986 @default.
- W4210361383 cites W2904060505 @default.
- W4210361383 cites W2963446712 @default.
- W4210361383 cites W2983339698 @default.
- W4210361383 cites W3039545596 @default.
- W4210361383 cites W3088864412 @default.
- W4210361383 cites W3092743670 @default.
- W4210361383 cites W4252353710 @default.
- W4210361383 doi "https://doi.org/10.1016/j.eij.2022.01.002" @default.
- W4210361383 hasPublicationYear "2022" @default.
- W4210361383 type Work @default.
- W4210361383 citedByCount "4" @default.
- W4210361383 countsByYear W42103613832022 @default.
- W4210361383 countsByYear W42103613832023 @default.
- W4210361383 crossrefType "journal-article" @default.
- W4210361383 hasAuthorship W4210361383A5011131828 @default.
- W4210361383 hasAuthorship W4210361383A5034813320 @default.
- W4210361383 hasAuthorship W4210361383A5074714159 @default.
- W4210361383 hasBestOaLocation W42103613831 @default.
- W4210361383 hasConcept C108583219 @default.
- W4210361383 hasConcept C126322002 @default.
- W4210361383 hasConcept C126838900 @default.
- W4210361383 hasConcept C142724271 @default.
- W4210361383 hasConcept C153180895 @default.
- W4210361383 hasConcept C154945302 @default.
- W4210361383 hasConcept C2777914695 @default.
- W4210361383 hasConcept C2778158872 @default.
- W4210361383 hasConcept C2779134260 @default.
- W4210361383 hasConcept C3008058167 @default.
- W4210361383 hasConcept C41008148 @default.
- W4210361383 hasConcept C524204448 @default.
- W4210361383 hasConcept C70437156 @default.
- W4210361383 hasConcept C71924100 @default.
- W4210361383 hasConcept C81363708 @default.
- W4210361383 hasConceptScore W4210361383C108583219 @default.
- W4210361383 hasConceptScore W4210361383C126322002 @default.
- W4210361383 hasConceptScore W4210361383C126838900 @default.
- W4210361383 hasConceptScore W4210361383C142724271 @default.
- W4210361383 hasConceptScore W4210361383C153180895 @default.
- W4210361383 hasConceptScore W4210361383C154945302 @default.
- W4210361383 hasConceptScore W4210361383C2777914695 @default.
- W4210361383 hasConceptScore W4210361383C2778158872 @default.
- W4210361383 hasConceptScore W4210361383C2779134260 @default.
- W4210361383 hasConceptScore W4210361383C3008058167 @default.
- W4210361383 hasConceptScore W4210361383C41008148 @default.
- W4210361383 hasConceptScore W4210361383C524204448 @default.
- W4210361383 hasConceptScore W4210361383C70437156 @default.
- W4210361383 hasConceptScore W4210361383C71924100 @default.
- W4210361383 hasConceptScore W4210361383C81363708 @default.
- W4210361383 hasIssue "2" @default.
- W4210361383 hasLocation W42103613831 @default.
- W4210361383 hasOpenAccess W4210361383 @default.
- W4210361383 hasPrimaryLocation W42103613831 @default.
- W4210361383 hasRelatedWork W2517027266 @default.
- W4210361383 hasRelatedWork W2731899572 @default.
- W4210361383 hasRelatedWork W2999805992 @default.
- W4210361383 hasRelatedWork W3116150086 @default.
- W4210361383 hasRelatedWork W3133861977 @default.
- W4210361383 hasRelatedWork W4200173597 @default.
- W4210361383 hasRelatedWork W4210361383 @default.
- W4210361383 hasRelatedWork W4291897433 @default.
- W4210361383 hasRelatedWork W4312417841 @default.
- W4210361383 hasRelatedWork W4321369474 @default.
- W4210361383 hasVolume "23" @default.
- W4210361383 isParatext "false" @default.
- W4210361383 isRetracted "false" @default.
- W4210361383 workType "article" @default.