Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210361996> ?p ?o ?g. }
- W4210361996 abstract "The early diagnosis and treatment of COVID-19 has been a challenge all over the world. It is challenging to manufacture many testing kits and even then, their accuracy rate is very low. Studies carried out recently show that chest x-ray images are of great help in the diagnosis of COVID-19. In this study, we have developed a COVID-19 detection model that by observing the chest x-ray images of the patient, detects that either the patient is affected by COVID-19 or not. The model is developed using a custom Convolutional Neural Network (CNN) that differentiates between COVID-19 and healthy x-ray images so that the patient can be diagnosed and quarantined on time to prevent the spread of the pandemic. We used two different datasets which are publicly available for the training and validation of this model. Upon completion, the proposed model yields an accuracy of almost 98%. Upon further training, our model will be able to be used as a COVID-19 detection tool in hospitals worldwide and will play a vital role in early detection and timely containment of the pandemic." @default.
- W4210361996 created "2022-02-08" @default.
- W4210361996 creator A5019955424 @default.
- W4210361996 creator A5045260525 @default.
- W4210361996 creator A5062125413 @default.
- W4210361996 creator A5066076129 @default.
- W4210361996 creator A5081443669 @default.
- W4210361996 creator A5086703267 @default.
- W4210361996 date "2021-11-09" @default.
- W4210361996 modified "2023-10-16" @default.
- W4210361996 title "Covid-19 Detection by using Deep learning-based Custom Convolution Neural Network (CNN)" @default.
- W4210361996 cites W2157993873 @default.
- W4210361996 cites W2759589131 @default.
- W4210361996 cites W2894754687 @default.
- W4210361996 cites W2946489756 @default.
- W4210361996 cites W2987730452 @default.
- W4210361996 cites W2991565926 @default.
- W4210361996 cites W2995864059 @default.
- W4210361996 cites W2996418518 @default.
- W4210361996 cites W2998520945 @default.
- W4210361996 cites W2999320773 @default.
- W4210361996 cites W3000805804 @default.
- W4210361996 cites W3001111433 @default.
- W4210361996 cites W3002401090 @default.
- W4210361996 cites W3002619131 @default.
- W4210361996 cites W3002750149 @default.
- W4210361996 cites W3002869745 @default.
- W4210361996 cites W3004242559 @default.
- W4210361996 cites W3007562589 @default.
- W4210361996 cites W3013601031 @default.
- W4210361996 cites W3016488464 @default.
- W4210361996 cites W3017855299 @default.
- W4210361996 cites W3037095325 @default.
- W4210361996 cites W3039545596 @default.
- W4210361996 cites W3042426630 @default.
- W4210361996 cites W3044899232 @default.
- W4210361996 cites W3049510520 @default.
- W4210361996 cites W3082674629 @default.
- W4210361996 cites W3083753334 @default.
- W4210361996 cites W3085331204 @default.
- W4210361996 cites W3087304209 @default.
- W4210361996 cites W3090641532 @default.
- W4210361996 cites W3101633406 @default.
- W4210361996 cites W3114958142 @default.
- W4210361996 cites W3118959187 @default.
- W4210361996 cites W3119850748 @default.
- W4210361996 cites W3120359844 @default.
- W4210361996 cites W3124099916 @default.
- W4210361996 cites W3126918253 @default.
- W4210361996 cites W3128709165 @default.
- W4210361996 cites W3130139313 @default.
- W4210361996 cites W3130643827 @default.
- W4210361996 cites W3134081317 @default.
- W4210361996 cites W3137494282 @default.
- W4210361996 cites W3143978330 @default.
- W4210361996 cites W3156640576 @default.
- W4210361996 cites W3157903123 @default.
- W4210361996 cites W3161812047 @default.
- W4210361996 cites W3162113556 @default.
- W4210361996 cites W3162351260 @default.
- W4210361996 cites W3162686100 @default.
- W4210361996 cites W3162765153 @default.
- W4210361996 cites W3163482530 @default.
- W4210361996 cites W3172905624 @default.
- W4210361996 cites W3177416782 @default.
- W4210361996 cites W3183700819 @default.
- W4210361996 cites W3195684016 @default.
- W4210361996 cites W3195887575 @default.
- W4210361996 cites W3204524944 @default.
- W4210361996 cites W3206633879 @default.
- W4210361996 cites W4200364479 @default.
- W4210361996 cites W4236844847 @default.
- W4210361996 cites W4237853877 @default.
- W4210361996 doi "https://doi.org/10.1109/icic53490.2021.9693071" @default.
- W4210361996 hasPublicationYear "2021" @default.
- W4210361996 type Work @default.
- W4210361996 citedByCount "1" @default.
- W4210361996 countsByYear W42103619962023 @default.
- W4210361996 crossrefType "proceedings-article" @default.
- W4210361996 hasAuthorship W4210361996A5019955424 @default.
- W4210361996 hasAuthorship W4210361996A5045260525 @default.
- W4210361996 hasAuthorship W4210361996A5062125413 @default.
- W4210361996 hasAuthorship W4210361996A5066076129 @default.
- W4210361996 hasAuthorship W4210361996A5081443669 @default.
- W4210361996 hasAuthorship W4210361996A5086703267 @default.
- W4210361996 hasConcept C108583219 @default.
- W4210361996 hasConcept C116675565 @default.
- W4210361996 hasConcept C119857082 @default.
- W4210361996 hasConcept C142724271 @default.
- W4210361996 hasConcept C153180895 @default.
- W4210361996 hasConcept C154945302 @default.
- W4210361996 hasConcept C159047783 @default.
- W4210361996 hasConcept C2779134260 @default.
- W4210361996 hasConcept C3006700255 @default.
- W4210361996 hasConcept C3007834351 @default.
- W4210361996 hasConcept C3008058167 @default.
- W4210361996 hasConcept C41008148 @default.
- W4210361996 hasConcept C45347329 @default.
- W4210361996 hasConcept C50644808 @default.
- W4210361996 hasConcept C524204448 @default.