Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210362027> ?p ?o ?g. }
- W4210362027 endingPage "4174" @default.
- W4210362027 startingPage "4162" @default.
- W4210362027 abstract "Blood pressure (BP) is one of the most important indicators of health. BP that is too high or too low causes varying degrees of diseases, such as renal impairment, cerebrovascular incidents, and cardiovascular diseases. Since traditional cuff-based BP measurement techniques have the drawbacks of patient discomfort and the impossibility of continuous BP monitoring, noninvasive cuffless continuous BP measurement has become a popular topic. The common noninvasive approach uses machine-learning (ML) algorithms to estimate BP by using the features extracted from simultaneous photoplethysmogram (PPG) and electrocardiogram (ECG) signals, such as the pulse transit time and pulse wave velocity. This study investigates the BP estimation performance of the novel dendritic neural regression (DNR) method proposed by us. Unlike conventional neural networks, DNR utilizes the multiplication operator as the excitation function in each dendritic branch, inspired by biological neuron phenomena, and can effectively capture nonlinear relationships between distinct input features. In addition, AMSGrad is used as the optimization algorithm to further enhance the dendritic neural model’s performance. The experimental results show that by being fed a combination of the raw features extracted from the ECG and PPG signals and the components of the BP mathematical models, DNR can increase the accuracy of systolic BP, diastolic BP, and mean arterial pressure estimation significantly, which are superior to the state-of-the-art ML techniques. According to the British Hypertension Society protocol, DNR achieves a grade of A for the long-term BP estimation. Considering its architectural simplicity and powerful performance, the proposed method can be regarded as a reliable tool for estimating long-term continuous BP in a noninvasive cuffless way." @default.
- W4210362027 created "2022-02-08" @default.
- W4210362027 creator A5046906366 @default.
- W4210362027 creator A5060316815 @default.
- W4210362027 creator A5066935890 @default.
- W4210362027 creator A5090895520 @default.
- W4210362027 date "2023-07-01" @default.
- W4210362027 modified "2023-10-16" @default.
- W4210362027 title "Noninvasive Cuffless Blood Pressure Estimation With Dendritic Neural Regression" @default.
- W4210362027 cites W131597362 @default.
- W4210362027 cites W171259044 @default.
- W4210362027 cites W1792666317 @default.
- W4210362027 cites W1904307646 @default.
- W4210362027 cites W1929289657 @default.
- W4210362027 cites W1969600128 @default.
- W4210362027 cites W1981341256 @default.
- W4210362027 cites W1985940938 @default.
- W4210362027 cites W1992840460 @default.
- W4210362027 cites W1993715041 @default.
- W4210362027 cites W1995341919 @default.
- W4210362027 cites W2007307432 @default.
- W4210362027 cites W2019606383 @default.
- W4210362027 cites W2020134397 @default.
- W4210362027 cites W2021674224 @default.
- W4210362027 cites W2025206702 @default.
- W4210362027 cites W2037983522 @default.
- W4210362027 cites W2041420156 @default.
- W4210362027 cites W2046424015 @default.
- W4210362027 cites W2096166399 @default.
- W4210362027 cites W2097332485 @default.
- W4210362027 cites W2098347923 @default.
- W4210362027 cites W2124909584 @default.
- W4210362027 cites W2133750711 @default.
- W4210362027 cites W2135455927 @default.
- W4210362027 cites W2144205676 @default.
- W4210362027 cites W2146713522 @default.
- W4210362027 cites W2162800060 @default.
- W4210362027 cites W2166451543 @default.
- W4210362027 cites W2183841542 @default.
- W4210362027 cites W2190147660 @default.
- W4210362027 cites W2294418644 @default.
- W4210362027 cites W2303651371 @default.
- W4210362027 cites W2431637923 @default.
- W4210362027 cites W2474812513 @default.
- W4210362027 cites W2495671496 @default.
- W4210362027 cites W2538253134 @default.
- W4210362027 cites W2608498389 @default.
- W4210362027 cites W2613121856 @default.
- W4210362027 cites W2755894455 @default.
- W4210362027 cites W2756460743 @default.
- W4210362027 cites W2784502443 @default.
- W4210362027 cites W2785236517 @default.
- W4210362027 cites W2793945683 @default.
- W4210362027 cites W2888351819 @default.
- W4210362027 cites W2890827456 @default.
- W4210362027 cites W2895603185 @default.
- W4210362027 cites W2896545929 @default.
- W4210362027 cites W2898519551 @default.
- W4210362027 cites W2898902003 @default.
- W4210362027 cites W2979921992 @default.
- W4210362027 cites W2997346981 @default.
- W4210362027 cites W3006649679 @default.
- W4210362027 cites W3008815204 @default.
- W4210362027 cites W3009043047 @default.
- W4210362027 cites W3010878087 @default.
- W4210362027 cites W3017210342 @default.
- W4210362027 cites W3021468941 @default.
- W4210362027 cites W3025646590 @default.
- W4210362027 cites W3026986712 @default.
- W4210362027 cites W3042891861 @default.
- W4210362027 cites W3045718109 @default.
- W4210362027 cites W3094969945 @default.
- W4210362027 cites W4231081240 @default.
- W4210362027 cites W4243554800 @default.
- W4210362027 doi "https://doi.org/10.1109/tcyb.2022.3141380" @default.
- W4210362027 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35113792" @default.
- W4210362027 hasPublicationYear "2023" @default.
- W4210362027 type Work @default.
- W4210362027 citedByCount "5" @default.
- W4210362027 countsByYear W42103620272022 @default.
- W4210362027 countsByYear W42103620272023 @default.
- W4210362027 crossrefType "journal-article" @default.
- W4210362027 hasAuthorship W4210362027A5046906366 @default.
- W4210362027 hasAuthorship W4210362027A5060316815 @default.
- W4210362027 hasAuthorship W4210362027A5066935890 @default.
- W4210362027 hasAuthorship W4210362027A5090895520 @default.
- W4210362027 hasConcept C11413529 @default.
- W4210362027 hasConcept C116390426 @default.
- W4210362027 hasConcept C126322002 @default.
- W4210362027 hasConcept C134652429 @default.
- W4210362027 hasConcept C136764020 @default.
- W4210362027 hasConcept C153180895 @default.
- W4210362027 hasConcept C154945302 @default.
- W4210362027 hasConcept C17140001 @default.
- W4210362027 hasConcept C172321821 @default.
- W4210362027 hasConcept C2910533495 @default.
- W4210362027 hasConcept C37616216 @default.
- W4210362027 hasConcept C41008148 @default.