Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210362227> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4210362227 endingPage "235" @default.
- W4210362227 startingPage "211" @default.
- W4210362227 abstract "Machine learning (ML) is becoming increasingly important as a research tool due to its various frameworks and learning approaches. With the ever-increasing scale of software, reliability has become a crucial issue and software defect prediction is utilized to assist developers in finding potential defect and allocating their testing efforts. Traditional methods of software defect prediction mainly focus on designing static code metrics which are fed into ML classifiers to predict defects in the code. Even with the same ML techniques, many researchers apply statistical approaches to classify software modules and decide whether each module is defect prone or not and, accordingly, train their model. Deep neural network (DNN) and convolutional neural network (CNN) models built by the appropriate design decisions are crucial to obtain the desired classifier performance. This is especially significant when predicting fault proneness of software modules. When correctly identified, this could help in reducing the testing cost by directing the efforts more toward the modules identified to be fault prone. This paper proposed a N ovel CNN (NCNN) model to predict software defects. The framework used is Python Programming Language with Keras and TensorFlow. A comparative analysis with ML algorithms [such as Random Forest (RF), Decision Trees (DT), and Naïve Bayes (NB)] and DNN model in terms of F-measure (known as F1-score), recall, precision, and accuracy has been presented from four NASA system data sets (KC1, PC1, PC2, and KC3) selected from PROMISE repository. The experimental results indicated that NCNN model was comparable to the existing classifiers and outperformed them in most of the experiments." @default.
- W4210362227 created "2022-02-08" @default.
- W4210362227 creator A5016329881 @default.
- W4210362227 creator A5047865082 @default.
- W4210362227 creator A5066268521 @default.
- W4210362227 date "2022-01-29" @default.
- W4210362227 modified "2023-10-02" @default.
- W4210362227 title "A Novel Convolutional Neural Network Model to Predict Software Defects" @default.
- W4210362227 cites W1998661617 @default.
- W4210362227 cites W2019831608 @default.
- W4210362227 cites W2026750231 @default.
- W4210362227 cites W2032968695 @default.
- W4210362227 cites W2081025867 @default.
- W4210362227 cites W2099919734 @default.
- W4210362227 cites W2112032657 @default.
- W4210362227 cites W2112796928 @default.
- W4210362227 cites W2143637886 @default.
- W4210362227 cites W2305460223 @default.
- W4210362227 cites W2606020393 @default.
- W4210362227 cites W2743316948 @default.
- W4210362227 cites W2789977158 @default.
- W4210362227 cites W2945699300 @default.
- W4210362227 doi "https://doi.org/10.1002/9781119821908.ch9" @default.
- W4210362227 hasPublicationYear "2022" @default.
- W4210362227 type Work @default.
- W4210362227 citedByCount "1" @default.
- W4210362227 countsByYear W42103622272022 @default.
- W4210362227 crossrefType "other" @default.
- W4210362227 hasAuthorship W4210362227A5016329881 @default.
- W4210362227 hasAuthorship W4210362227A5047865082 @default.
- W4210362227 hasAuthorship W4210362227A5066268521 @default.
- W4210362227 hasConcept C1009929 @default.
- W4210362227 hasConcept C108583219 @default.
- W4210362227 hasConcept C117447612 @default.
- W4210362227 hasConcept C119857082 @default.
- W4210362227 hasConcept C12267149 @default.
- W4210362227 hasConcept C124101348 @default.
- W4210362227 hasConcept C154945302 @default.
- W4210362227 hasConcept C169258074 @default.
- W4210362227 hasConcept C199360897 @default.
- W4210362227 hasConcept C2777904410 @default.
- W4210362227 hasConcept C41008148 @default.
- W4210362227 hasConcept C50644808 @default.
- W4210362227 hasConcept C519991488 @default.
- W4210362227 hasConcept C52001869 @default.
- W4210362227 hasConcept C529173508 @default.
- W4210362227 hasConcept C81363708 @default.
- W4210362227 hasConcept C82214349 @default.
- W4210362227 hasConcept C95623464 @default.
- W4210362227 hasConceptScore W4210362227C1009929 @default.
- W4210362227 hasConceptScore W4210362227C108583219 @default.
- W4210362227 hasConceptScore W4210362227C117447612 @default.
- W4210362227 hasConceptScore W4210362227C119857082 @default.
- W4210362227 hasConceptScore W4210362227C12267149 @default.
- W4210362227 hasConceptScore W4210362227C124101348 @default.
- W4210362227 hasConceptScore W4210362227C154945302 @default.
- W4210362227 hasConceptScore W4210362227C169258074 @default.
- W4210362227 hasConceptScore W4210362227C199360897 @default.
- W4210362227 hasConceptScore W4210362227C2777904410 @default.
- W4210362227 hasConceptScore W4210362227C41008148 @default.
- W4210362227 hasConceptScore W4210362227C50644808 @default.
- W4210362227 hasConceptScore W4210362227C519991488 @default.
- W4210362227 hasConceptScore W4210362227C52001869 @default.
- W4210362227 hasConceptScore W4210362227C529173508 @default.
- W4210362227 hasConceptScore W4210362227C81363708 @default.
- W4210362227 hasConceptScore W4210362227C82214349 @default.
- W4210362227 hasConceptScore W4210362227C95623464 @default.
- W4210362227 hasLocation W42103622271 @default.
- W4210362227 hasOpenAccess W4210362227 @default.
- W4210362227 hasPrimaryLocation W42103622271 @default.
- W4210362227 hasRelatedWork W2133416068 @default.
- W4210362227 hasRelatedWork W2968586400 @default.
- W4210362227 hasRelatedWork W3211546796 @default.
- W4210362227 hasRelatedWork W4223564025 @default.
- W4210362227 hasRelatedWork W4281616679 @default.
- W4210362227 hasRelatedWork W4285225238 @default.
- W4210362227 hasRelatedWork W4312623605 @default.
- W4210362227 hasRelatedWork W4375930479 @default.
- W4210362227 hasRelatedWork W4385452424 @default.
- W4210362227 hasRelatedWork W4386025228 @default.
- W4210362227 isParatext "false" @default.
- W4210362227 isRetracted "false" @default.
- W4210362227 workType "other" @default.