Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210362228> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4210362228 endingPage "13" @default.
- W4210362228 startingPage "1" @default.
- W4210362228 abstract "Due to the exponential growth of high-quality fake photos on social media and the Internet, it is critical to develop robust forgery detection tools. Traditional picture- and video-editing techniques include copying areas of the image, referred to as the copy-move approach. The standard image processing methods physically search for patterns relevant to the duplicated material, restricting the usage in enormous data categorization. On the contrary, while deep learning (DL) models have exhibited improved performance, they have significant generalization concerns because of their high reliance on training datasets and the requirement for good hyperparameter selection. With this in mind, this article provides an automated deep learning-based fusion model for detecting and localizing copy-move forgeries (DLFM-CMDFC). The proposed DLFM-CMDFC technique combines models of generative adversarial networks (GANs) and densely connected networks (DenseNets). The two outputs are combined in the DLFM-CMDFC technique to create a layer for encoding the input vectors with the initial layer of an extreme learning machine (ELM) classifier. Additionally, the ELM model's weight and bias values are optimally adjusted using the artificial fish swarm algorithm (AFSA). The networks' outputs are supplied into the merger unit as input. Finally, a faked image is used to identify the difference between the input and target areas. Two benchmark datasets are used to validate the proposed model's performance. The experimental results established the proposed model's superiority over recently developed approaches." @default.
- W4210362228 created "2022-02-08" @default.
- W4210362228 creator A5006119491 @default.
- W4210362228 creator A5008084305 @default.
- W4210362228 creator A5008249092 @default.
- W4210362228 creator A5028092758 @default.
- W4210362228 creator A5084215524 @default.
- W4210362228 date "2022-01-31" @default.
- W4210362228 modified "2023-10-14" @default.
- W4210362228 title "Design of Automated Deep Learning-Based Fusion Model for Copy-Move Image Forgery Detection" @default.
- W4210362228 cites W2580690807 @default.
- W4210362228 cites W2739273633 @default.
- W4210362228 cites W2799950491 @default.
- W4210362228 cites W2963446712 @default.
- W4210362228 cites W2972520844 @default.
- W4210362228 cites W2972799026 @default.
- W4210362228 cites W2993134847 @default.
- W4210362228 cites W2997227084 @default.
- W4210362228 cites W3008461877 @default.
- W4210362228 cites W3022867133 @default.
- W4210362228 cites W3033173051 @default.
- W4210362228 cites W3034854296 @default.
- W4210362228 cites W3036591324 @default.
- W4210362228 cites W3043251718 @default.
- W4210362228 cites W3109865886 @default.
- W4210362228 cites W3111739077 @default.
- W4210362228 cites W3129315061 @default.
- W4210362228 cites W3138230904 @default.
- W4210362228 cites W3171013130 @default.
- W4210362228 cites W3199435972 @default.
- W4210362228 doi "https://doi.org/10.1155/2022/8501738" @default.
- W4210362228 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35140780" @default.
- W4210362228 hasPublicationYear "2022" @default.
- W4210362228 type Work @default.
- W4210362228 citedByCount "13" @default.
- W4210362228 countsByYear W42103622282022 @default.
- W4210362228 countsByYear W42103622282023 @default.
- W4210362228 crossrefType "journal-article" @default.
- W4210362228 hasAuthorship W4210362228A5006119491 @default.
- W4210362228 hasAuthorship W4210362228A5008084305 @default.
- W4210362228 hasAuthorship W4210362228A5008249092 @default.
- W4210362228 hasAuthorship W4210362228A5028092758 @default.
- W4210362228 hasAuthorship W4210362228A5084215524 @default.
- W4210362228 hasBestOaLocation W42103622281 @default.
- W4210362228 hasConcept C108583219 @default.
- W4210362228 hasConcept C119857082 @default.
- W4210362228 hasConcept C124101348 @default.
- W4210362228 hasConcept C153180895 @default.
- W4210362228 hasConcept C154945302 @default.
- W4210362228 hasConcept C2780150128 @default.
- W4210362228 hasConcept C41008148 @default.
- W4210362228 hasConcept C50644808 @default.
- W4210362228 hasConcept C95623464 @default.
- W4210362228 hasConceptScore W4210362228C108583219 @default.
- W4210362228 hasConceptScore W4210362228C119857082 @default.
- W4210362228 hasConceptScore W4210362228C124101348 @default.
- W4210362228 hasConceptScore W4210362228C153180895 @default.
- W4210362228 hasConceptScore W4210362228C154945302 @default.
- W4210362228 hasConceptScore W4210362228C2780150128 @default.
- W4210362228 hasConceptScore W4210362228C41008148 @default.
- W4210362228 hasConceptScore W4210362228C50644808 @default.
- W4210362228 hasConceptScore W4210362228C95623464 @default.
- W4210362228 hasLocation W42103622281 @default.
- W4210362228 hasLocation W42103622282 @default.
- W4210362228 hasLocation W42103622283 @default.
- W4210362228 hasLocation W42103622284 @default.
- W4210362228 hasLocation W42103622285 @default.
- W4210362228 hasOpenAccess W4210362228 @default.
- W4210362228 hasPrimaryLocation W42103622281 @default.
- W4210362228 hasRelatedWork W2067443264 @default.
- W4210362228 hasRelatedWork W2556335056 @default.
- W4210362228 hasRelatedWork W2741186499 @default.
- W4210362228 hasRelatedWork W2804652951 @default.
- W4210362228 hasRelatedWork W2905251838 @default.
- W4210362228 hasRelatedWork W2906710337 @default.
- W4210362228 hasRelatedWork W2969890106 @default.
- W4210362228 hasRelatedWork W31566076 @default.
- W4210362228 hasRelatedWork W4297902562 @default.
- W4210362228 hasRelatedWork W4380075502 @default.
- W4210362228 hasVolume "2022" @default.
- W4210362228 isParatext "false" @default.
- W4210362228 isRetracted "false" @default.
- W4210362228 workType "article" @default.