Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210362242> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4210362242 endingPage "1605" @default.
- W4210362242 startingPage "1587" @default.
- W4210362242 abstract "Various digital data sets that encode user-item relationships contain a multilevel overlapping cluster structure. The user-item relation can be encoded in a weighted bipartite graph and uncovering these overlapping coclusters of users and items at multiple levels in the bipartite graph can play an important role in analyzing user-item data in many applications. For example, for effective online marketing, such as placing online ads or deploying smart online marketing strategies, identifying co-occurring clusters of users and items can lead to accurately targeted advertisements and better marketing outcomes. In this paper, we propose fast algorithms inspired by algebraic multigrid methods for finding multilevel overlapping cocluster structures of feature matrices that encode user-item relations. Starting from the weighted bipartite graph structure of the feature matrix, the algorithms use agglomeration procedures to recursively coarsen the bipartite graphs that represent the relations between the coclusters on increasingly coarser levels. New fast coarsening routines are described that circumvent the bottleneck of all-to-all similarity computations by exploiting measures of direct connection strength between row and column variables in the feature matrix. Providing accurate coclusters at multiple levels in a manner that can scale to large data sets is a challenging task. In this paper, we propose heuristic algorithms that approximately and recursively minimize normalized cuts to obtain coclusters in the aggregated bipartite graphs on multiple levels of resolution. Whereas the main novelty and focus of the paper lies in algorithmic aspects of reducing computational complexity to obtain scalable methods specifically for large rectangular user-item matrices, the algorithmic variants also define several new models for determining multilevel coclusters that we justify intuitively by relating them to principles that underlie collaborative filtering methods for user-item relationships. Experimental results show that the proposed algorithms successfully uncover the multilevel overlapping cluster structure for artificial and real data sets. Summary of Contribution: This paper develops new and efficient computational methods for finding the multilevel overlapping cocluster structure of feature matrices that encode user-item relationships. We base our approach on the use of pairwise similarity measures between features, seeking clusters of points that are similar to each other and dissimilar from the points outside the cluster. We approximately solve the problem of finding optimal overlapping coclusters on multiple levels by employing a framework that is based on efficient multilevel methods that have been used previously to solve sparse linear systems and to cluster graphs. Our main contribution is that we extend these methods in efficient manners to find coclusters in the bipartite graphs that encode common and important user-item relationships or social network relations. The novel methods that we propose are inherently scalable to large problem sizes and are naturally able to uncover overlapping coclusters at multiple levels, whereas existing methods generally only find coclusters at the fine level. We illustrate the algorithm and its performance on some standard test problems from the literature and on a proof-of-concept real-world data set that relates LinkedIn users to their skills and expertise." @default.
- W4210362242 created "2022-02-08" @default.
- W4210362242 creator A5005460746 @default.
- W4210362242 creator A5023907914 @default.
- W4210362242 creator A5058900041 @default.
- W4210362242 creator A5089134354 @default.
- W4210362242 date "2022-05-01" @default.
- W4210362242 modified "2023-10-14" @default.
- W4210362242 title "Efficient Algebraic Multigrid Methods for Multilevel Overlapping Coclustering of User-Item Relationships" @default.
- W4210362242 cites W1554141790 @default.
- W4210362242 cites W1987971958 @default.
- W4210362242 cites W1997542937 @default.
- W4210362242 cites W2016621483 @default.
- W4210362242 cites W2033840545 @default.
- W4210362242 cites W2058871925 @default.
- W4210362242 cites W2106540986 @default.
- W4210362242 cites W2118608338 @default.
- W4210362242 cites W2121947440 @default.
- W4210362242 cites W2136787567 @default.
- W4210362242 cites W2144541363 @default.
- W4210362242 cites W2155171604 @default.
- W4210362242 cites W2165521059 @default.
- W4210362242 cites W2219888463 @default.
- W4210362242 cites W2889369603 @default.
- W4210362242 cites W2963889991 @default.
- W4210362242 cites W4249267926 @default.
- W4210362242 cites W73153831 @default.
- W4210362242 doi "https://doi.org/10.1287/ijoc.2021.1137" @default.
- W4210362242 hasPublicationYear "2022" @default.
- W4210362242 type Work @default.
- W4210362242 citedByCount "1" @default.
- W4210362242 countsByYear W42103622422023 @default.
- W4210362242 crossrefType "journal-article" @default.
- W4210362242 hasAuthorship W4210362242A5005460746 @default.
- W4210362242 hasAuthorship W4210362242A5023907914 @default.
- W4210362242 hasAuthorship W4210362242A5058900041 @default.
- W4210362242 hasAuthorship W4210362242A5089134354 @default.
- W4210362242 hasConcept C11413529 @default.
- W4210362242 hasConcept C132525143 @default.
- W4210362242 hasConcept C138885662 @default.
- W4210362242 hasConcept C197657726 @default.
- W4210362242 hasConcept C2776401178 @default.
- W4210362242 hasConcept C41008148 @default.
- W4210362242 hasConcept C41895202 @default.
- W4210362242 hasConcept C48044578 @default.
- W4210362242 hasConcept C77088390 @default.
- W4210362242 hasConcept C80444323 @default.
- W4210362242 hasConceptScore W4210362242C11413529 @default.
- W4210362242 hasConceptScore W4210362242C132525143 @default.
- W4210362242 hasConceptScore W4210362242C138885662 @default.
- W4210362242 hasConceptScore W4210362242C197657726 @default.
- W4210362242 hasConceptScore W4210362242C2776401178 @default.
- W4210362242 hasConceptScore W4210362242C41008148 @default.
- W4210362242 hasConceptScore W4210362242C41895202 @default.
- W4210362242 hasConceptScore W4210362242C48044578 @default.
- W4210362242 hasConceptScore W4210362242C77088390 @default.
- W4210362242 hasConceptScore W4210362242C80444323 @default.
- W4210362242 hasIssue "3" @default.
- W4210362242 hasLocation W42103622421 @default.
- W4210362242 hasOpenAccess W4210362242 @default.
- W4210362242 hasPrimaryLocation W42103622421 @default.
- W4210362242 hasRelatedWork W1525643724 @default.
- W4210362242 hasRelatedWork W2067938758 @default.
- W4210362242 hasRelatedWork W2302028273 @default.
- W4210362242 hasRelatedWork W2333420780 @default.
- W4210362242 hasRelatedWork W2364921833 @default.
- W4210362242 hasRelatedWork W2369797701 @default.
- W4210362242 hasRelatedWork W2379773790 @default.
- W4210362242 hasRelatedWork W2381168281 @default.
- W4210362242 hasRelatedWork W2382623646 @default.
- W4210362242 hasRelatedWork W3087771547 @default.
- W4210362242 hasVolume "34" @default.
- W4210362242 isParatext "false" @default.
- W4210362242 isRetracted "false" @default.
- W4210362242 workType "article" @default.