Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210362342> ?p ?o ?g. }
- W4210362342 endingPage "111998" @default.
- W4210362342 startingPage "111998" @default.
- W4210362342 abstract "Dimethyl ether (DME), a widely studied alternative fuel, is known to exhibit complex low- and high-temperature oxidation chemistry. It is also the smallest molecule in the families of symmetric ethers and oxymethylene ethers that receive attention as renewable fuels . Thanks to several studies performed in facilities such as shock tubes, jet-stirred reactors and flames, it can be assumed that the DME oxidation is well understood. However, DME oxidation in flow reactors has been addressed comparatively rarely, although this configuration presents an interesting system with influences of both kinetics and fluid dynamics on the reaction behavior. To examine the interplay of both influences and potential uncertainties resulting from such effects, DME oxidation was experimentally investigated over an extended range of conditions in a flow reactor equipped with mass-spectrometric analysis. Quantitative species profiles were obtained at near-atmospheric pressure in a temperature range of 400–1100 K for three equivalence ratios φ (0.8, 1.0 and 1.2), and three flow rates at each stoichiometry. These nine different cases were first analyzed using a detailed chemical reaction mechanism with a Plug-Flow Reactor (PFR) model. In-depth examination of experimental and reaction model uncertainties led to updates in the reaction mechanism that were performed on the basis of most recent, reliable kinetic information. In spite of the good agreement of the PFR model with the experimental data at selected conditions, especially in the low-temperature regime, substantial deviations in the reactivity and associated species profiles were noted in several cases, particularly for lean conditions at low flow rates and intermediate temperatures around and above 700 K. A two-dimensional (2D) computational fluid dynamics (CFD) model was therefore employed to characterize the reactive flow conditions more accurately. Significant contributions of fluid dynamics effects were observed in the cases that presented the most severe deviations, and overall good agreement within experimental uncertainty was obtained for the nine cases with the 2D simulations. With the aid of a mathematical curve matching procedure using a variety of recent, established kinetic mechanisms, it could be convincingly demonstrated under the current conditions that improvements in predictive modeling capability in the sensitive test cases were not a question of improved kinetics but were mainly achieved by considering the two-dimensional reactive flow. As a consequence, the present investigation can serve to alert the community to the potential major influences that might be neglected if standard PFR models are used to predict fuel oxidation without detailed analysis whether the conditions are suited to that approach." @default.
- W4210362342 created "2022-02-08" @default.
- W4210362342 creator A5006844354 @default.
- W4210362342 creator A5014318170 @default.
- W4210362342 creator A5033225635 @default.
- W4210362342 creator A5036966643 @default.
- W4210362342 creator A5042649127 @default.
- W4210362342 creator A5086139474 @default.
- W4210362342 date "2022-06-01" @default.
- W4210362342 modified "2023-10-10" @default.
- W4210362342 title "Dimethyl ether oxidation analyzed in a given flow reactor: Experimental and modeling uncertainties" @default.
- W4210362342 cites W1499199343 @default.
- W4210362342 cites W1581284971 @default.
- W4210362342 cites W1921935873 @default.
- W4210362342 cites W1961785775 @default.
- W4210362342 cites W1964375458 @default.
- W4210362342 cites W1966739003 @default.
- W4210362342 cites W1969455831 @default.
- W4210362342 cites W1969643122 @default.
- W4210362342 cites W1973201167 @default.
- W4210362342 cites W1986355909 @default.
- W4210362342 cites W1990891510 @default.
- W4210362342 cites W1992306350 @default.
- W4210362342 cites W2003874779 @default.
- W4210362342 cites W2012488271 @default.
- W4210362342 cites W2014978993 @default.
- W4210362342 cites W2022333924 @default.
- W4210362342 cites W2027989336 @default.
- W4210362342 cites W2028614962 @default.
- W4210362342 cites W2040585761 @default.
- W4210362342 cites W2041449670 @default.
- W4210362342 cites W2042019106 @default.
- W4210362342 cites W2048998010 @default.
- W4210362342 cites W2052716708 @default.
- W4210362342 cites W2057620171 @default.
- W4210362342 cites W2061444405 @default.
- W4210362342 cites W2064752511 @default.
- W4210362342 cites W2073313654 @default.
- W4210362342 cites W2073820687 @default.
- W4210362342 cites W2077296184 @default.
- W4210362342 cites W2078037332 @default.
- W4210362342 cites W2085102764 @default.
- W4210362342 cites W2086646518 @default.
- W4210362342 cites W2086741311 @default.
- W4210362342 cites W2091719155 @default.
- W4210362342 cites W2095041034 @default.
- W4210362342 cites W2142408141 @default.
- W4210362342 cites W2171504088 @default.
- W4210362342 cites W2319845792 @default.
- W4210362342 cites W2322476261 @default.
- W4210362342 cites W2327082734 @default.
- W4210362342 cites W2339681040 @default.
- W4210362342 cites W2347179630 @default.
- W4210362342 cites W2518843691 @default.
- W4210362342 cites W2568569828 @default.
- W4210362342 cites W2606323819 @default.
- W4210362342 cites W2733426838 @default.
- W4210362342 cites W2753273584 @default.
- W4210362342 cites W2770532251 @default.
- W4210362342 cites W2786233681 @default.
- W4210362342 cites W2789602451 @default.
- W4210362342 cites W2792128034 @default.
- W4210362342 cites W2796903017 @default.
- W4210362342 cites W2809396997 @default.
- W4210362342 cites W2811316466 @default.
- W4210362342 cites W2864476353 @default.
- W4210362342 cites W2883536346 @default.
- W4210362342 cites W2892059035 @default.
- W4210362342 cites W2905673950 @default.
- W4210362342 cites W2911763175 @default.
- W4210362342 cites W2911903009 @default.
- W4210362342 cites W2933398062 @default.
- W4210362342 cites W2937616438 @default.
- W4210362342 cites W2948062765 @default.
- W4210362342 cites W2951825320 @default.
- W4210362342 cites W2986829605 @default.
- W4210362342 cites W2987004384 @default.
- W4210362342 cites W2995252416 @default.
- W4210362342 cites W3017324440 @default.
- W4210362342 cites W3024012370 @default.
- W4210362342 cites W3081806430 @default.
- W4210362342 cites W3088321451 @default.
- W4210362342 cites W3095058940 @default.
- W4210362342 cites W3133967086 @default.
- W4210362342 cites W3135210114 @default.
- W4210362342 cites W437567598 @default.
- W4210362342 cites W868547844 @default.
- W4210362342 doi "https://doi.org/10.1016/j.combustflame.2022.111998" @default.
- W4210362342 hasPublicationYear "2022" @default.
- W4210362342 type Work @default.
- W4210362342 citedByCount "10" @default.
- W4210362342 countsByYear W42103623422022 @default.
- W4210362342 countsByYear W42103623422023 @default.
- W4210362342 crossrefType "journal-article" @default.
- W4210362342 hasAuthorship W4210362342A5006844354 @default.
- W4210362342 hasAuthorship W4210362342A5014318170 @default.
- W4210362342 hasAuthorship W4210362342A5033225635 @default.
- W4210362342 hasAuthorship W4210362342A5036966643 @default.