Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210363333> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4210363333 endingPage "100" @default.
- W4210363333 startingPage "83" @default.
- W4210363333 abstract "In the visual fashion clothing analysis, many researchers are attracted with the success of deep learning concepts. In this work, we introduce a multi-staged feature-attentive network to attain clothing category classification and attribute prediction. The proposed network in this work brings out a landmark-independent structure, whereas the existing landmark-dependent structures take up a lot of manpower for landmark annotation and also suffers from inter- and intra-individual variability. Our focus on this work is intensifying feature extraction by incorporating low-level and high-level feature fusion within fashion network. We are aiming on multi-level contextual features which utilise spatial and channel-wise information to create contextual feature supervision. Further, we enclose a semi-supervised learning approach to escalate fashion clothes analysis that utilises knowledge sharing among labelled and unlabelled data. To the best of our knowledge, this is the first attempt to investigate the semi-supervised learning in fashion clothing analysis by adopting multitask architecture which simultaneously study the clothing categories as well as its attributes. We evaluated the proposed approach on large-scale DeepFashion-C dataset while unlabelled dataset obtained from six publicly available fashion datasets. Experimental results show that the proposed architectures for supervised and semi-supervised learning entailing deep convolutional neural network outperforms many state-of-the-art techniques considerably, in fashion clothing analysis." @default.
- W4210363333 created "2022-02-08" @default.
- W4210363333 creator A5068777520 @default.
- W4210363333 creator A5074891850 @default.
- W4210363333 date "2022-01-25" @default.
- W4210363333 modified "2023-10-14" @default.
- W4210363333 title "Multi-staged Feature-Attentive Network for Fashion Clothing Classification and Attribute Prediction" @default.
- W4210363333 doi "https://doi.org/10.5565/rev/elcvia.1409" @default.
- W4210363333 hasPublicationYear "2022" @default.
- W4210363333 type Work @default.
- W4210363333 citedByCount "1" @default.
- W4210363333 countsByYear W42103633332022 @default.
- W4210363333 crossrefType "journal-article" @default.
- W4210363333 hasAuthorship W4210363333A5068777520 @default.
- W4210363333 hasAuthorship W4210363333A5074891850 @default.
- W4210363333 hasBestOaLocation W42103633331 @default.
- W4210363333 hasConcept C108583219 @default.
- W4210363333 hasConcept C119857082 @default.
- W4210363333 hasConcept C123657996 @default.
- W4210363333 hasConcept C136389625 @default.
- W4210363333 hasConcept C138885662 @default.
- W4210363333 hasConcept C142362112 @default.
- W4210363333 hasConcept C153180895 @default.
- W4210363333 hasConcept C153349607 @default.
- W4210363333 hasConcept C154945302 @default.
- W4210363333 hasConcept C166957645 @default.
- W4210363333 hasConcept C2776321320 @default.
- W4210363333 hasConcept C2776401178 @default.
- W4210363333 hasConcept C2780297707 @default.
- W4210363333 hasConcept C41008148 @default.
- W4210363333 hasConcept C41895202 @default.
- W4210363333 hasConcept C50644808 @default.
- W4210363333 hasConcept C530175646 @default.
- W4210363333 hasConcept C59404180 @default.
- W4210363333 hasConcept C81363708 @default.
- W4210363333 hasConcept C95457728 @default.
- W4210363333 hasConceptScore W4210363333C108583219 @default.
- W4210363333 hasConceptScore W4210363333C119857082 @default.
- W4210363333 hasConceptScore W4210363333C123657996 @default.
- W4210363333 hasConceptScore W4210363333C136389625 @default.
- W4210363333 hasConceptScore W4210363333C138885662 @default.
- W4210363333 hasConceptScore W4210363333C142362112 @default.
- W4210363333 hasConceptScore W4210363333C153180895 @default.
- W4210363333 hasConceptScore W4210363333C153349607 @default.
- W4210363333 hasConceptScore W4210363333C154945302 @default.
- W4210363333 hasConceptScore W4210363333C166957645 @default.
- W4210363333 hasConceptScore W4210363333C2776321320 @default.
- W4210363333 hasConceptScore W4210363333C2776401178 @default.
- W4210363333 hasConceptScore W4210363333C2780297707 @default.
- W4210363333 hasConceptScore W4210363333C41008148 @default.
- W4210363333 hasConceptScore W4210363333C41895202 @default.
- W4210363333 hasConceptScore W4210363333C50644808 @default.
- W4210363333 hasConceptScore W4210363333C530175646 @default.
- W4210363333 hasConceptScore W4210363333C59404180 @default.
- W4210363333 hasConceptScore W4210363333C81363708 @default.
- W4210363333 hasConceptScore W4210363333C95457728 @default.
- W4210363333 hasIssue "2" @default.
- W4210363333 hasLocation W42103633331 @default.
- W4210363333 hasLocation W42103633332 @default.
- W4210363333 hasLocation W42103633333 @default.
- W4210363333 hasOpenAccess W4210363333 @default.
- W4210363333 hasPrimaryLocation W42103633331 @default.
- W4210363333 hasRelatedWork W2546942002 @default.
- W4210363333 hasRelatedWork W2724710774 @default.
- W4210363333 hasRelatedWork W2731899572 @default.
- W4210363333 hasRelatedWork W2970216048 @default.
- W4210363333 hasRelatedWork W3133861977 @default.
- W4210363333 hasRelatedWork W3192794374 @default.
- W4210363333 hasRelatedWork W4220686584 @default.
- W4210363333 hasRelatedWork W4246751904 @default.
- W4210363333 hasRelatedWork W4312417841 @default.
- W4210363333 hasRelatedWork W4321369474 @default.
- W4210363333 hasVolume "20" @default.
- W4210363333 isParatext "false" @default.
- W4210363333 isRetracted "false" @default.
- W4210363333 workType "article" @default.