Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210363384> ?p ?o ?g. }
- W4210363384 endingPage "127549" @default.
- W4210363384 startingPage "127549" @default.
- W4210363384 abstract "Exploration of incipient motion study is significantly important for the river hydraulics community. The present study, along with experimental investigation, considered a new multi-level ensemble machine learning (ML) to determine critical shear stress (CSS) of gravel particles in a cohesive mixture of clay-silt-gravel, clay-silt-sand-gravel, and clay-sand-gravel. The multi-level ensemble ML included a voting-based ensemble meta-estimator integrated with three modern standalone ensemble techniques, namely extreme gradient boosting (XGBoost), Adaptive boosting (Adaboost), and Random Forest (RF), and performance is compared with three standalone ensemble models for prediction of CSS values. Besides, the optimum input combinations were explored using the forward stepwise selection method, as a correlation-based feature selection, and mutual information theory. The outcomes of simulation indicated that the multi-level ensemble machine learning (voting) model in terms of correlation coefficient (R = 0.9641), and root mean square error (RMSE = 0.2022) was superior to the standalone ensemble techniques, i.e., XGBoost (R = 0.9482, and RMSE = 0.2375), Adaboost (R = 0.9496, and RMSE = 0.2387), and RF (R = 0.9392, and RMSE = 0.2739) for accurate estimation of CSS." @default.
- W4210363384 created "2022-02-08" @default.
- W4210363384 creator A5001681203 @default.
- W4210363384 creator A5008427326 @default.
- W4210363384 creator A5014705355 @default.
- W4210363384 creator A5021677009 @default.
- W4210363384 creator A5023641926 @default.
- W4210363384 date "2022-04-01" @default.
- W4210363384 modified "2023-10-02" @default.
- W4210363384 title "Application of a modern multi-level ensemble approach for the estimation of critical shear stress in cohesive sediment mixture" @default.
- W4210363384 cites W1509880931 @default.
- W4210363384 cites W157448225 @default.
- W4210363384 cites W1605597954 @default.
- W4210363384 cites W1725729894 @default.
- W4210363384 cites W1974138876 @default.
- W4210363384 cites W1980579675 @default.
- W4210363384 cites W1985479415 @default.
- W4210363384 cites W1988790447 @default.
- W4210363384 cites W1991200370 @default.
- W4210363384 cites W2009621568 @default.
- W4210363384 cites W2011287807 @default.
- W4210363384 cites W2020738303 @default.
- W4210363384 cites W2021704225 @default.
- W4210363384 cites W2024559851 @default.
- W4210363384 cites W2031272656 @default.
- W4210363384 cites W2032639744 @default.
- W4210363384 cites W2043841080 @default.
- W4210363384 cites W2067721410 @default.
- W4210363384 cites W2074681440 @default.
- W4210363384 cites W2086747528 @default.
- W4210363384 cites W2087952909 @default.
- W4210363384 cites W2090873761 @default.
- W4210363384 cites W2091184571 @default.
- W4210363384 cites W2117070481 @default.
- W4210363384 cites W2142635246 @default.
- W4210363384 cites W2345947849 @default.
- W4210363384 cites W2422610036 @default.
- W4210363384 cites W2493878705 @default.
- W4210363384 cites W2517970180 @default.
- W4210363384 cites W2733535563 @default.
- W4210363384 cites W2763921354 @default.
- W4210363384 cites W2771041415 @default.
- W4210363384 cites W2785309616 @default.
- W4210363384 cites W2801476843 @default.
- W4210363384 cites W2883423789 @default.
- W4210363384 cites W2887264241 @default.
- W4210363384 cites W2889246260 @default.
- W4210363384 cites W2902977137 @default.
- W4210363384 cites W2947611747 @default.
- W4210363384 cites W2952497330 @default.
- W4210363384 cites W2958502338 @default.
- W4210363384 cites W2962839520 @default.
- W4210363384 cites W2965545576 @default.
- W4210363384 cites W2970572844 @default.
- W4210363384 cites W2971349717 @default.
- W4210363384 cites W2977702035 @default.
- W4210363384 cites W2980395987 @default.
- W4210363384 cites W3006757100 @default.
- W4210363384 cites W3010047009 @default.
- W4210363384 cites W3013498854 @default.
- W4210363384 cites W3013767593 @default.
- W4210363384 cites W3016350595 @default.
- W4210363384 cites W3017323153 @default.
- W4210363384 cites W3025835050 @default.
- W4210363384 cites W3091557087 @default.
- W4210363384 cites W3092318747 @default.
- W4210363384 cites W3105432036 @default.
- W4210363384 cites W3106098033 @default.
- W4210363384 cites W3113312824 @default.
- W4210363384 cites W3119620992 @default.
- W4210363384 cites W3124129677 @default.
- W4210363384 cites W3124590480 @default.
- W4210363384 cites W3133991310 @default.
- W4210363384 cites W3135443144 @default.
- W4210363384 cites W3160048565 @default.
- W4210363384 cites W3167674173 @default.
- W4210363384 cites W3198273358 @default.
- W4210363384 cites W4212883601 @default.
- W4210363384 cites W4244770713 @default.
- W4210363384 cites W4245232658 @default.
- W4210363384 cites W862519699 @default.
- W4210363384 cites W8816426 @default.
- W4210363384 doi "https://doi.org/10.1016/j.jhydrol.2022.127549" @default.
- W4210363384 hasPublicationYear "2022" @default.
- W4210363384 type Work @default.
- W4210363384 citedByCount "30" @default.
- W4210363384 countsByYear W42103633842022 @default.
- W4210363384 countsByYear W42103633842023 @default.
- W4210363384 crossrefType "journal-article" @default.
- W4210363384 hasAuthorship W4210363384A5001681203 @default.
- W4210363384 hasAuthorship W4210363384A5008427326 @default.
- W4210363384 hasAuthorship W4210363384A5014705355 @default.
- W4210363384 hasAuthorship W4210363384A5021677009 @default.
- W4210363384 hasAuthorship W4210363384A5023641926 @default.
- W4210363384 hasConcept C105795698 @default.
- W4210363384 hasConcept C114793014 @default.
- W4210363384 hasConcept C119857082 @default.
- W4210363384 hasConcept C12267149 @default.