Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210363398> ?p ?o ?g. }
- W4210363398 endingPage "1221" @default.
- W4210363398 startingPage "1221" @default.
- W4210363398 abstract "Cloud computing has been widely adopted over the years by practitioners and companies with a variety of requirements. With a strong economic appeal, cloud computing makes possible the idea of computing as a utility, in which computing resources can be consumed and paid for with the same convenience as electricity. One of the main characteristics of cloud as a service is elasticity supported by auto-scaling capabilities. The auto-scaling cloud mechanism allows adjusting resources to meet multiple demands dynamically. The elasticity service is best represented in critical web trading and transaction systems that must satisfy a certain service level agreement (SLA), such as maximum response time limits for different types of inbound requests. Nevertheless, existing cloud infrastructures maintained by different cloud enterprises often offer different cloud service costs for equivalent SLAs upon several factors. The factors might be contract types, VM types, auto-scaling configuration parameters, and incoming workload demand. Identifying a combination of parameters that results in SLA compliance directly in the system is often sophisticated, while the manual analysis is prone to errors due to the huge number of possibilities. This paper proposes the modeling of auto-scaling mechanisms in a typical cloud infrastructure using a stochastic Petri net (SPN) and the employment of a well-established adaptive search metaheuristic (GRASP) to discover critical trade-offs between performance and cost in cloud services.The proposed SPN models enable cloud designers to estimate the metrics of cloud services in accordance with each required SLA such as the best configuration, cost, system response time, and throughput.The auto-scaling SPN model was extensively validated with 95% confidence against a real test-bed scenario with 18.000 samples. A case-study of cloud services was used to investigate the viability of this method and to evaluate the adoptability of the proposed auto-scaling model in practice. On the other hand, the proposed optimization algorithm enables the identification of economic system configuration and parameterization to satisfy required SLA and budget constraints. The adoption of the metaheuristic GRASP approach and the modeling of auto-scaling mechanisms in this work can help search for the optimized-quality solution and operational management for cloud services in practice." @default.
- W4210363398 created "2022-02-08" @default.
- W4210363398 creator A5011821071 @default.
- W4210363398 creator A5016126087 @default.
- W4210363398 creator A5022206003 @default.
- W4210363398 creator A5024946787 @default.
- W4210363398 creator A5035133271 @default.
- W4210363398 creator A5041872980 @default.
- W4210363398 creator A5047702689 @default.
- W4210363398 creator A5054133174 @default.
- W4210363398 creator A5077020574 @default.
- W4210363398 date "2022-02-05" @default.
- W4210363398 modified "2023-09-26" @default.
- W4210363398 title "Performance-Cost Trade-Off in Auto-Scaling Mechanisms for Cloud Computing" @default.
- W4210363398 cites W1646360816 @default.
- W4210363398 cites W1888294891 @default.
- W4210363398 cites W1986755980 @default.
- W4210363398 cites W2005562282 @default.
- W4210363398 cites W2028438572 @default.
- W4210363398 cites W2038249652 @default.
- W4210363398 cites W2072003508 @default.
- W4210363398 cites W2079636926 @default.
- W4210363398 cites W2153278891 @default.
- W4210363398 cites W2285938394 @default.
- W4210363398 cites W2296020156 @default.
- W4210363398 cites W2296544043 @default.
- W4210363398 cites W2582083445 @default.
- W4210363398 cites W2737934037 @default.
- W4210363398 cites W2751016991 @default.
- W4210363398 cites W2769910944 @default.
- W4210363398 cites W2774142158 @default.
- W4210363398 cites W2782622643 @default.
- W4210363398 cites W2804288952 @default.
- W4210363398 cites W2913594846 @default.
- W4210363398 cites W2969027300 @default.
- W4210363398 cites W3028321021 @default.
- W4210363398 cites W3029176236 @default.
- W4210363398 cites W3120335745 @default.
- W4210363398 cites W4236709998 @default.
- W4210363398 cites W4255191222 @default.
- W4210363398 doi "https://doi.org/10.3390/s22031221" @default.
- W4210363398 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35161968" @default.
- W4210363398 hasPublicationYear "2022" @default.
- W4210363398 type Work @default.
- W4210363398 citedByCount "1" @default.
- W4210363398 countsByYear W42103633982023 @default.
- W4210363398 crossrefType "journal-article" @default.
- W4210363398 hasAuthorship W4210363398A5011821071 @default.
- W4210363398 hasAuthorship W4210363398A5016126087 @default.
- W4210363398 hasAuthorship W4210363398A5022206003 @default.
- W4210363398 hasAuthorship W4210363398A5024946787 @default.
- W4210363398 hasAuthorship W4210363398A5035133271 @default.
- W4210363398 hasAuthorship W4210363398A5041872980 @default.
- W4210363398 hasAuthorship W4210363398A5047702689 @default.
- W4210363398 hasAuthorship W4210363398A5054133174 @default.
- W4210363398 hasAuthorship W4210363398A5077020574 @default.
- W4210363398 hasBestOaLocation W42103633981 @default.
- W4210363398 hasConcept C111919701 @default.
- W4210363398 hasConcept C120115606 @default.
- W4210363398 hasConcept C120314980 @default.
- W4210363398 hasConcept C121854251 @default.
- W4210363398 hasConcept C144133560 @default.
- W4210363398 hasConcept C159985019 @default.
- W4210363398 hasConcept C162853370 @default.
- W4210363398 hasConcept C181889124 @default.
- W4210363398 hasConcept C184842701 @default.
- W4210363398 hasConcept C192562407 @default.
- W4210363398 hasConcept C2778160497 @default.
- W4210363398 hasConcept C2778476105 @default.
- W4210363398 hasConcept C41008148 @default.
- W4210363398 hasConcept C79974875 @default.
- W4210363398 hasConceptScore W4210363398C111919701 @default.
- W4210363398 hasConceptScore W4210363398C120115606 @default.
- W4210363398 hasConceptScore W4210363398C120314980 @default.
- W4210363398 hasConceptScore W4210363398C121854251 @default.
- W4210363398 hasConceptScore W4210363398C144133560 @default.
- W4210363398 hasConceptScore W4210363398C159985019 @default.
- W4210363398 hasConceptScore W4210363398C162853370 @default.
- W4210363398 hasConceptScore W4210363398C181889124 @default.
- W4210363398 hasConceptScore W4210363398C184842701 @default.
- W4210363398 hasConceptScore W4210363398C192562407 @default.
- W4210363398 hasConceptScore W4210363398C2778160497 @default.
- W4210363398 hasConceptScore W4210363398C2778476105 @default.
- W4210363398 hasConceptScore W4210363398C41008148 @default.
- W4210363398 hasConceptScore W4210363398C79974875 @default.
- W4210363398 hasIssue "3" @default.
- W4210363398 hasLocation W42103633981 @default.
- W4210363398 hasLocation W42103633982 @default.
- W4210363398 hasLocation W42103633983 @default.
- W4210363398 hasOpenAccess W4210363398 @default.
- W4210363398 hasPrimaryLocation W42103633981 @default.
- W4210363398 hasRelatedWork W1915030824 @default.
- W4210363398 hasRelatedWork W1974931822 @default.
- W4210363398 hasRelatedWork W2077580581 @default.
- W4210363398 hasRelatedWork W2429304581 @default.
- W4210363398 hasRelatedWork W2592191818 @default.
- W4210363398 hasRelatedWork W2595104930 @default.
- W4210363398 hasRelatedWork W2810377373 @default.