Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210363621> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4210363621 endingPage "299" @default.
- W4210363621 startingPage "289" @default.
- W4210363621 abstract "Machine learning (ML) classifiers provide convenience and accuracy in coastline extraction compared to traditional methods and image processing techniques. In literature, the studies about coastline extraction with machine learning classifiers are not focused adequately on the coast types that affect the process. To eliminate this gap, machine learning classifiers were examined in terms of their accuracies on different coastal morphologies. ML classifiers were divided into 3 main groups: Support Vector Machines (SVMs), Multi-Layer Perceptron (MLP) and Ensemble Learning (EL) Classifiers. Within the groups, coastlines were estimated by utilizing different formulas and/or classifiers and their accuracies were examined considering different coast types. Most frequently encountered coastal types, including bedrock, beaches and artificial coasts are included in the study. Bedrock and beach type of coasts were investigated by dividing into sub-groups as shaded, unshaded bedrock coasts and silty-sandy, sandy-gravel beaches. Classifiers were observed as accurate on unshaded bedrock coasts and their results were similar. In spite of that, extraction errors were incurred on the bedrock coasts due to shadows. MLP classifiers with Linear, Logarithmic, and Tanh activation functions were the most accurate in these areas. The challenge was shallow depths and suspended solids in beach type coasts. EL classifiers and SVMs with sigmoidal kernel function were adversely affected on these areas whilst the best results were obtained by utilizing the other SVMs and MLP classifiers. On artificial coasts, successful results were obtained with all classifiers." @default.
- W4210363621 created "2022-02-08" @default.
- W4210363621 creator A5067244955 @default.
- W4210363621 creator A5090611528 @default.
- W4210363621 date "2022-02-01" @default.
- W4210363621 modified "2023-10-01" @default.
- W4210363621 title "Coast type based accuracy assessment for coastline extraction from satellite image with machine learning classifiers" @default.
- W4210363621 cites W1536721264 @default.
- W4210363621 cites W1971203776 @default.
- W4210363621 cites W1978271497 @default.
- W4210363621 cites W1978617972 @default.
- W4210363621 cites W1981020233 @default.
- W4210363621 cites W1981406993 @default.
- W4210363621 cites W1983470924 @default.
- W4210363621 cites W1986419099 @default.
- W4210363621 cites W2008990828 @default.
- W4210363621 cites W2035639988 @default.
- W4210363621 cites W2094323894 @default.
- W4210363621 cites W2102200338 @default.
- W4210363621 cites W2111345113 @default.
- W4210363621 cites W2134463914 @default.
- W4210363621 cites W2161968139 @default.
- W4210363621 cites W2229214638 @default.
- W4210363621 cites W2429318187 @default.
- W4210363621 cites W2564795694 @default.
- W4210363621 cites W2612693672 @default.
- W4210363621 cites W2768890748 @default.
- W4210363621 cites W2793682472 @default.
- W4210363621 cites W2898221339 @default.
- W4210363621 cites W3044570801 @default.
- W4210363621 cites W3090020533 @default.
- W4210363621 doi "https://doi.org/10.1016/j.ejrs.2022.01.010" @default.
- W4210363621 hasPublicationYear "2022" @default.
- W4210363621 type Work @default.
- W4210363621 citedByCount "3" @default.
- W4210363621 countsByYear W42103636212022 @default.
- W4210363621 countsByYear W42103636212023 @default.
- W4210363621 crossrefType "journal-article" @default.
- W4210363621 hasAuthorship W4210363621A5067244955 @default.
- W4210363621 hasAuthorship W4210363621A5090611528 @default.
- W4210363621 hasBestOaLocation W42103636211 @default.
- W4210363621 hasConcept C114793014 @default.
- W4210363621 hasConcept C119857082 @default.
- W4210363621 hasConcept C12267149 @default.
- W4210363621 hasConcept C127313418 @default.
- W4210363621 hasConcept C137527640 @default.
- W4210363621 hasConcept C153180895 @default.
- W4210363621 hasConcept C154945302 @default.
- W4210363621 hasConcept C179717631 @default.
- W4210363621 hasConcept C41008148 @default.
- W4210363621 hasConcept C50644808 @default.
- W4210363621 hasConcept C60908668 @default.
- W4210363621 hasConcept C81388566 @default.
- W4210363621 hasConceptScore W4210363621C114793014 @default.
- W4210363621 hasConceptScore W4210363621C119857082 @default.
- W4210363621 hasConceptScore W4210363621C12267149 @default.
- W4210363621 hasConceptScore W4210363621C127313418 @default.
- W4210363621 hasConceptScore W4210363621C137527640 @default.
- W4210363621 hasConceptScore W4210363621C153180895 @default.
- W4210363621 hasConceptScore W4210363621C154945302 @default.
- W4210363621 hasConceptScore W4210363621C179717631 @default.
- W4210363621 hasConceptScore W4210363621C41008148 @default.
- W4210363621 hasConceptScore W4210363621C50644808 @default.
- W4210363621 hasConceptScore W4210363621C60908668 @default.
- W4210363621 hasConceptScore W4210363621C81388566 @default.
- W4210363621 hasFunder F4320321387 @default.
- W4210363621 hasFunder F4320322277 @default.
- W4210363621 hasIssue "1" @default.
- W4210363621 hasLocation W42103636211 @default.
- W4210363621 hasOpenAccess W4210363621 @default.
- W4210363621 hasPrimaryLocation W42103636211 @default.
- W4210363621 hasRelatedWork W2633361897 @default.
- W4210363621 hasRelatedWork W2924231309 @default.
- W4210363621 hasRelatedWork W2940336242 @default.
- W4210363621 hasRelatedWork W2941320171 @default.
- W4210363621 hasRelatedWork W3106494386 @default.
- W4210363621 hasRelatedWork W3168994312 @default.
- W4210363621 hasRelatedWork W3186155701 @default.
- W4210363621 hasRelatedWork W4231994957 @default.
- W4210363621 hasRelatedWork W4285741730 @default.
- W4210363621 hasRelatedWork W3128183380 @default.
- W4210363621 hasVolume "25" @default.
- W4210363621 isParatext "false" @default.
- W4210363621 isRetracted "false" @default.
- W4210363621 workType "article" @default.