Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210364056> ?p ?o ?g. }
- W4210364056 endingPage "449" @default.
- W4210364056 startingPage "449" @default.
- W4210364056 abstract "Accurate prediction of short-term rockburst has a significant role in improving the safety of workers in mining and geotechnical projects. The rockburst occurrence is nonlinearly correlated with its influencing factors that guarantee imprecise predicting results by employing the traditional methods. In this study, three approaches including including t-distributed stochastic neighbor embedding (t-SNE), K-means clustering, and extreme gradient boosting (XGBoost) were employed to predict the short-term rockburst risk. A total of 93 rockburst patterns with six influential features from micro seismic monitoring events of the Jinping-II hydropower project in China were used to create the database. The original data were randomly split into training and testing sets with a 70/30 splitting ratio. The prediction practice was followed in three steps. Firstly, a state-of-the-art data reduction mechanism t-SNE was employed to reduce the exaggeration of the rockburst database. Secondly, an unsupervised machine learning, i.e., K-means clustering, was adopted to categorize the t-SNE dataset into various clusters. Thirdly, a supervised gradient boosting machine learning method i.e., XGBoost was utilized to predict various levels of short-term rockburst database. The classification accuracy of XGBoost was checked using several performance indices. The results of the proposed model serve as a great benchmark for future short-term rockburst levels prediction with high accuracy." @default.
- W4210364056 created "2022-02-08" @default.
- W4210364056 creator A5032609230 @default.
- W4210364056 creator A5044730319 @default.
- W4210364056 creator A5067299517 @default.
- W4210364056 date "2022-01-30" @default.
- W4210364056 modified "2023-09-30" @default.
- W4210364056 title "Predictive Modeling of Short-Term Rockburst for the Stability of Subsurface Structures Using Machine Learning Approaches: t-SNE, K-Means Clustering and XGBoost" @default.
- W4210364056 cites W1971891346 @default.
- W4210364056 cites W1977556410 @default.
- W4210364056 cites W1980604258 @default.
- W4210364056 cites W1987971958 @default.
- W4210364056 cites W2012594398 @default.
- W4210364056 cites W2030655673 @default.
- W4210364056 cites W2043534441 @default.
- W4210364056 cites W2047072771 @default.
- W4210364056 cites W2050269945 @default.
- W4210364056 cites W2050914964 @default.
- W4210364056 cites W2070493638 @default.
- W4210364056 cites W2090754752 @default.
- W4210364056 cites W2135695572 @default.
- W4210364056 cites W2140405352 @default.
- W4210364056 cites W2168020168 @default.
- W4210364056 cites W2215242856 @default.
- W4210364056 cites W2223110200 @default.
- W4210364056 cites W2256514539 @default.
- W4210364056 cites W2480752959 @default.
- W4210364056 cites W2524066112 @default.
- W4210364056 cites W2604800002 @default.
- W4210364056 cites W2724998772 @default.
- W4210364056 cites W2755552321 @default.
- W4210364056 cites W2794113036 @default.
- W4210364056 cites W2794372004 @default.
- W4210364056 cites W2808459110 @default.
- W4210364056 cites W2883008720 @default.
- W4210364056 cites W2884906228 @default.
- W4210364056 cites W2887762785 @default.
- W4210364056 cites W2902343234 @default.
- W4210364056 cites W2909763643 @default.
- W4210364056 cites W2911020617 @default.
- W4210364056 cites W2914656526 @default.
- W4210364056 cites W2940513806 @default.
- W4210364056 cites W2941242975 @default.
- W4210364056 cites W2948505361 @default.
- W4210364056 cites W2953743022 @default.
- W4210364056 cites W2969322340 @default.
- W4210364056 cites W2978721872 @default.
- W4210364056 cites W3000029390 @default.
- W4210364056 cites W3011092893 @default.
- W4210364056 cites W3049533328 @default.
- W4210364056 cites W3082831974 @default.
- W4210364056 cites W3121325140 @default.
- W4210364056 cites W3128683994 @default.
- W4210364056 cites W3133107848 @default.
- W4210364056 cites W3133495528 @default.
- W4210364056 cites W3156765264 @default.
- W4210364056 cites W3176197158 @default.
- W4210364056 cites W3181690476 @default.
- W4210364056 cites W3186778705 @default.
- W4210364056 cites W3197998359 @default.
- W4210364056 cites W3205807440 @default.
- W4210364056 cites W3205923397 @default.
- W4210364056 cites W3207828942 @default.
- W4210364056 cites W3210242289 @default.
- W4210364056 doi "https://doi.org/10.3390/math10030449" @default.
- W4210364056 hasPublicationYear "2022" @default.
- W4210364056 type Work @default.
- W4210364056 citedByCount "26" @default.
- W4210364056 countsByYear W42103640562022 @default.
- W4210364056 countsByYear W42103640562023 @default.
- W4210364056 crossrefType "journal-article" @default.
- W4210364056 hasAuthorship W4210364056A5032609230 @default.
- W4210364056 hasAuthorship W4210364056A5044730319 @default.
- W4210364056 hasAuthorship W4210364056A5067299517 @default.
- W4210364056 hasBestOaLocation W42103640561 @default.
- W4210364056 hasConcept C112972136 @default.
- W4210364056 hasConcept C119857082 @default.
- W4210364056 hasConcept C121332964 @default.
- W4210364056 hasConcept C124101348 @default.
- W4210364056 hasConcept C127313418 @default.
- W4210364056 hasConcept C13280743 @default.
- W4210364056 hasConcept C147789679 @default.
- W4210364056 hasConcept C154945302 @default.
- W4210364056 hasConcept C185592680 @default.
- W4210364056 hasConcept C185798385 @default.
- W4210364056 hasConcept C41008148 @default.
- W4210364056 hasConcept C46686674 @default.
- W4210364056 hasConcept C61797465 @default.
- W4210364056 hasConcept C62520636 @default.
- W4210364056 hasConcept C73555534 @default.
- W4210364056 hasConcept C80191262 @default.
- W4210364056 hasConcept C94124525 @default.
- W4210364056 hasConceptScore W4210364056C112972136 @default.
- W4210364056 hasConceptScore W4210364056C119857082 @default.
- W4210364056 hasConceptScore W4210364056C121332964 @default.
- W4210364056 hasConceptScore W4210364056C124101348 @default.
- W4210364056 hasConceptScore W4210364056C127313418 @default.
- W4210364056 hasConceptScore W4210364056C13280743 @default.