Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210365874> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4210365874 abstract "Cancerous skin lesions affect millions of people worldwide each year and is one of the most treatable forms of cancer. While intensive biopsy testing and processing is required to confirm the presence of a malignant skin lesion, the detection of skin lesions by dermatologists on the primary level has always been based upon visual markers and sight-based perception based upon a defined set of diagnostic rules. The automation of this classification process has been achieved in the past for traditional machine learning algorithms and novel deep networks but faces challenges when the diagnosis is performed upon images of varied illumination and spatial orientation. This paper proposes a novel ensemble approach towards skin lesion classification by employing transfer learned pretrained deep learning image networks for the automated diagnosis process. Popular ImageNet Trained Networks such as DenseNet, Inception ResNetV2, VGG16 and MobileNet have been individually fine-tuned, tested and evaluated for identifying the type of skin lesion. A final integration of the best ensemble combination was performed based upon a search- based strategy to find the optimal combination for maximal reliability. The system was tested against benchmark datasets including HAM1000 and ISIC, showcasing an accuracy of 90%, precision of 0.895, and recall of 0.89 and the proposed combinational network showcases significantly better results than several existent state of the art skin cancer classification models in terms of accuracy, precision and recall." @default.
- W4210365874 created "2022-02-08" @default.
- W4210365874 creator A5014945840 @default.
- W4210365874 creator A5023905925 @default.
- W4210365874 creator A5056094039 @default.
- W4210365874 creator A5066618434 @default.
- W4210365874 date "2021-11-19" @default.
- W4210365874 modified "2023-09-27" @default.
- W4210365874 title "Analyzing the Diagnostic Efficacy of Deep Vision Networks for Malignant Skin Lesion Recognition" @default.
- W4210365874 cites W2731099719 @default.
- W4210365874 cites W2742554243 @default.
- W4210365874 cites W2789357239 @default.
- W4210365874 cites W2892053105 @default.
- W4210365874 cites W2899425762 @default.
- W4210365874 cites W2914959431 @default.
- W4210365874 cites W2922703796 @default.
- W4210365874 cites W2955308063 @default.
- W4210365874 cites W2956922850 @default.
- W4210365874 cites W2985232046 @default.
- W4210365874 cites W3011885901 @default.
- W4210365874 cites W3012614932 @default.
- W4210365874 cites W3023925071 @default.
- W4210365874 cites W3085719542 @default.
- W4210365874 doi "https://doi.org/10.1109/centcon52345.2021.9687979" @default.
- W4210365874 hasPublicationYear "2021" @default.
- W4210365874 type Work @default.
- W4210365874 citedByCount "1" @default.
- W4210365874 countsByYear W42103658742022 @default.
- W4210365874 crossrefType "proceedings-article" @default.
- W4210365874 hasAuthorship W4210365874A5014945840 @default.
- W4210365874 hasAuthorship W4210365874A5023905925 @default.
- W4210365874 hasAuthorship W4210365874A5056094039 @default.
- W4210365874 hasAuthorship W4210365874A5066618434 @default.
- W4210365874 hasConcept C100660578 @default.
- W4210365874 hasConcept C108583219 @default.
- W4210365874 hasConcept C111919701 @default.
- W4210365874 hasConcept C119857082 @default.
- W4210365874 hasConcept C121608353 @default.
- W4210365874 hasConcept C126322002 @default.
- W4210365874 hasConcept C13280743 @default.
- W4210365874 hasConcept C138885662 @default.
- W4210365874 hasConcept C142724271 @default.
- W4210365874 hasConcept C150899416 @default.
- W4210365874 hasConcept C153180895 @default.
- W4210365874 hasConcept C154945302 @default.
- W4210365874 hasConcept C16005928 @default.
- W4210365874 hasConcept C185798385 @default.
- W4210365874 hasConcept C205649164 @default.
- W4210365874 hasConcept C2777789703 @default.
- W4210365874 hasConcept C2781156865 @default.
- W4210365874 hasConcept C2988168687 @default.
- W4210365874 hasConcept C41008148 @default.
- W4210365874 hasConcept C41895202 @default.
- W4210365874 hasConcept C71924100 @default.
- W4210365874 hasConcept C81669768 @default.
- W4210365874 hasConcept C98045186 @default.
- W4210365874 hasConceptScore W4210365874C100660578 @default.
- W4210365874 hasConceptScore W4210365874C108583219 @default.
- W4210365874 hasConceptScore W4210365874C111919701 @default.
- W4210365874 hasConceptScore W4210365874C119857082 @default.
- W4210365874 hasConceptScore W4210365874C121608353 @default.
- W4210365874 hasConceptScore W4210365874C126322002 @default.
- W4210365874 hasConceptScore W4210365874C13280743 @default.
- W4210365874 hasConceptScore W4210365874C138885662 @default.
- W4210365874 hasConceptScore W4210365874C142724271 @default.
- W4210365874 hasConceptScore W4210365874C150899416 @default.
- W4210365874 hasConceptScore W4210365874C153180895 @default.
- W4210365874 hasConceptScore W4210365874C154945302 @default.
- W4210365874 hasConceptScore W4210365874C16005928 @default.
- W4210365874 hasConceptScore W4210365874C185798385 @default.
- W4210365874 hasConceptScore W4210365874C205649164 @default.
- W4210365874 hasConceptScore W4210365874C2777789703 @default.
- W4210365874 hasConceptScore W4210365874C2781156865 @default.
- W4210365874 hasConceptScore W4210365874C2988168687 @default.
- W4210365874 hasConceptScore W4210365874C41008148 @default.
- W4210365874 hasConceptScore W4210365874C41895202 @default.
- W4210365874 hasConceptScore W4210365874C71924100 @default.
- W4210365874 hasConceptScore W4210365874C81669768 @default.
- W4210365874 hasConceptScore W4210365874C98045186 @default.
- W4210365874 hasLocation W42103658741 @default.
- W4210365874 hasOpenAccess W4210365874 @default.
- W4210365874 hasPrimaryLocation W42103658741 @default.
- W4210365874 hasRelatedWork W2946016983 @default.
- W4210365874 hasRelatedWork W2960456850 @default.
- W4210365874 hasRelatedWork W3031818154 @default.
- W4210365874 hasRelatedWork W4213299466 @default.
- W4210365874 hasRelatedWork W4220785415 @default.
- W4210365874 hasRelatedWork W4281382123 @default.
- W4210365874 hasRelatedWork W4312200629 @default.
- W4210365874 hasRelatedWork W4312685930 @default.
- W4210365874 hasRelatedWork W4318834068 @default.
- W4210365874 hasRelatedWork W4318957922 @default.
- W4210365874 isParatext "false" @default.
- W4210365874 isRetracted "false" @default.
- W4210365874 workType "article" @default.