Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210366487> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4210366487 abstract "Solving Non-Linear Model Predictive Control (NMPC) online is often challenging due to the computational complexities involved. This issue can be avoided by approximating the optimization problem using supervised learning methods which comes with a trade-off on the optimality and/or constraint satisfaction. In this paper, a novel supervised learning framework for approximating NMPC is proposed, where we explicitly impart constraint knowledge within the neural networks. This knowledge is inherited by augmenting the loss function of the neural networks during the training phase with insights from KKT conditions. Logarithmic barrier functions are utilized to augment the loss function including conditions of primal and dual feasibility. The proposed framework can be applied to other machine learning based parametric approximators. This approach is easy to implement and its efficacy is demonstrated on a benchmark NMPC problem for continuous stirred tank reactor (CSTR)." @default.
- W4210366487 created "2022-02-08" @default.
- W4210366487 creator A5028148911 @default.
- W4210366487 creator A5082532636 @default.
- W4210366487 creator A5090203890 @default.
- W4210366487 date "2021-12-14" @default.
- W4210366487 modified "2023-09-26" @default.
- W4210366487 title "Constrained Neural Networks for Approximate Nonlinear Model Predictive Control" @default.
- W4210366487 cites W1981735120 @default.
- W4210366487 cites W2016331189 @default.
- W4210366487 cites W2120149330 @default.
- W4210366487 cites W2123871098 @default.
- W4210366487 cites W2134673975 @default.
- W4210366487 cites W2137743180 @default.
- W4210366487 cites W2792270834 @default.
- W4210366487 cites W2842089854 @default.
- W4210366487 cites W2887532679 @default.
- W4210366487 cites W2893078623 @default.
- W4210366487 cites W2897541745 @default.
- W4210366487 cites W2901291754 @default.
- W4210366487 cites W3012550246 @default.
- W4210366487 cites W3040855205 @default.
- W4210366487 cites W3101479673 @default.
- W4210366487 cites W3120012985 @default.
- W4210366487 cites W4235623249 @default.
- W4210366487 cites W4236941824 @default.
- W4210366487 doi "https://doi.org/10.1109/cdc45484.2021.9683320" @default.
- W4210366487 hasPublicationYear "2021" @default.
- W4210366487 type Work @default.
- W4210366487 citedByCount "1" @default.
- W4210366487 countsByYear W42103664872023 @default.
- W4210366487 crossrefType "proceedings-article" @default.
- W4210366487 hasAuthorship W4210366487A5028148911 @default.
- W4210366487 hasAuthorship W4210366487A5082532636 @default.
- W4210366487 hasAuthorship W4210366487A5090203890 @default.
- W4210366487 hasConcept C119857082 @default.
- W4210366487 hasConcept C121332964 @default.
- W4210366487 hasConcept C126255220 @default.
- W4210366487 hasConcept C127413603 @default.
- W4210366487 hasConcept C13280743 @default.
- W4210366487 hasConcept C136389625 @default.
- W4210366487 hasConcept C154945302 @default.
- W4210366487 hasConcept C158622935 @default.
- W4210366487 hasConcept C172205157 @default.
- W4210366487 hasConcept C185798385 @default.
- W4210366487 hasConcept C205649164 @default.
- W4210366487 hasConcept C2524010 @default.
- W4210366487 hasConcept C2775924081 @default.
- W4210366487 hasConcept C2776036281 @default.
- W4210366487 hasConcept C33923547 @default.
- W4210366487 hasConcept C41008148 @default.
- W4210366487 hasConcept C42360764 @default.
- W4210366487 hasConcept C44616089 @default.
- W4210366487 hasConcept C49937458 @default.
- W4210366487 hasConcept C50454189 @default.
- W4210366487 hasConcept C50644808 @default.
- W4210366487 hasConcept C62520636 @default.
- W4210366487 hasConcept C67334161 @default.
- W4210366487 hasConceptScore W4210366487C119857082 @default.
- W4210366487 hasConceptScore W4210366487C121332964 @default.
- W4210366487 hasConceptScore W4210366487C126255220 @default.
- W4210366487 hasConceptScore W4210366487C127413603 @default.
- W4210366487 hasConceptScore W4210366487C13280743 @default.
- W4210366487 hasConceptScore W4210366487C136389625 @default.
- W4210366487 hasConceptScore W4210366487C154945302 @default.
- W4210366487 hasConceptScore W4210366487C158622935 @default.
- W4210366487 hasConceptScore W4210366487C172205157 @default.
- W4210366487 hasConceptScore W4210366487C185798385 @default.
- W4210366487 hasConceptScore W4210366487C205649164 @default.
- W4210366487 hasConceptScore W4210366487C2524010 @default.
- W4210366487 hasConceptScore W4210366487C2775924081 @default.
- W4210366487 hasConceptScore W4210366487C2776036281 @default.
- W4210366487 hasConceptScore W4210366487C33923547 @default.
- W4210366487 hasConceptScore W4210366487C41008148 @default.
- W4210366487 hasConceptScore W4210366487C42360764 @default.
- W4210366487 hasConceptScore W4210366487C44616089 @default.
- W4210366487 hasConceptScore W4210366487C49937458 @default.
- W4210366487 hasConceptScore W4210366487C50454189 @default.
- W4210366487 hasConceptScore W4210366487C50644808 @default.
- W4210366487 hasConceptScore W4210366487C62520636 @default.
- W4210366487 hasConceptScore W4210366487C67334161 @default.
- W4210366487 hasFunder F4320316851 @default.
- W4210366487 hasLocation W42103664871 @default.
- W4210366487 hasOpenAccess W4210366487 @default.
- W4210366487 hasPrimaryLocation W42103664871 @default.
- W4210366487 hasRelatedWork W2086271726 @default.
- W4210366487 hasRelatedWork W2162476278 @default.
- W4210366487 hasRelatedWork W2357408736 @default.
- W4210366487 hasRelatedWork W2362635706 @default.
- W4210366487 hasRelatedWork W2380941129 @default.
- W4210366487 hasRelatedWork W2616932211 @default.
- W4210366487 hasRelatedWork W3124699092 @default.
- W4210366487 hasRelatedWork W4210366487 @default.
- W4210366487 hasRelatedWork W4361806772 @default.
- W4210366487 hasRelatedWork W4386041262 @default.
- W4210366487 isParatext "false" @default.
- W4210366487 isRetracted "false" @default.
- W4210366487 workType "article" @default.