Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210366710> ?p ?o ?g. }
- W4210366710 endingPage "108535" @default.
- W4210366710 startingPage "108535" @default.
- W4210366710 abstract "Neuro-fuzzy models have been used to predict runoff from rainfall, a hydrological phenomenon associated with a degree of uncertainty. However, rainfall can be measured from different meteorological stations, and runoff forecasting can be biased. Thus, the aim of this work is to propose a new stacking neuro-fuzzy framework for predicting runoff from physically distributed meteorological stations. As a method to estimate single one-day-ahead runoff and as a stacking approach, the Self-Identification Neuro-fuzzy Inference model (SINFIM) and Self-Organizing Neuro-fuzzy Inference System (SONFIS) were developed, respectively. As a case study, data from two Chilean watersheds (the Diguillín River (Ñuble region) and Colorado River (Maule region)) and average daily runoff and average daily rainfall recorded over eighteen years were collected from the Chilean Directorate of Water Resources (DGA). The experimental results show good adjustment in the single forecasting of runoff with meteorological stations showing adjustment and efficiency indexes of greater than 80% in the validation set and being able to efficiently predict both high and low runoff values. However, better results were obtained with the stacking model with values being higher than single runoff predictions and those of state-of-art approaches. Therefore, the general framework proposed represents a good approach for forecasting runoff since it can improve predictions and generate more accurate runoff values than single models." @default.
- W4210366710 created "2022-02-08" @default.
- W4210366710 creator A5043402158 @default.
- W4210366710 creator A5043769506 @default.
- W4210366710 creator A5048671602 @default.
- W4210366710 creator A5078170790 @default.
- W4210366710 creator A5088560375 @default.
- W4210366710 date "2022-03-01" @default.
- W4210366710 modified "2023-10-12" @default.
- W4210366710 title "A stacking neuro-fuzzy framework to forecast runoff from distributed meteorological stations" @default.
- W4210366710 cites W1718314175 @default.
- W4210366710 cites W1861932183 @default.
- W4210366710 cites W1970360626 @default.
- W4210366710 cites W1991329666 @default.
- W4210366710 cites W1993647351 @default.
- W4210366710 cites W2001320783 @default.
- W4210366710 cites W2015964844 @default.
- W4210366710 cites W2024659789 @default.
- W4210366710 cites W2029732391 @default.
- W4210366710 cites W2058998445 @default.
- W4210366710 cites W2066996619 @default.
- W4210366710 cites W2074546050 @default.
- W4210366710 cites W2081478993 @default.
- W4210366710 cites W2081823205 @default.
- W4210366710 cites W2085350428 @default.
- W4210366710 cites W2104327430 @default.
- W4210366710 cites W2112786897 @default.
- W4210366710 cites W2133297572 @default.
- W4210366710 cites W2149229403 @default.
- W4210366710 cites W2185358055 @default.
- W4210366710 cites W2273936634 @default.
- W4210366710 cites W2286991778 @default.
- W4210366710 cites W2312137008 @default.
- W4210366710 cites W2339498161 @default.
- W4210366710 cites W2460819813 @default.
- W4210366710 cites W2472660970 @default.
- W4210366710 cites W2488205021 @default.
- W4210366710 cites W2559712687 @default.
- W4210366710 cites W2564486588 @default.
- W4210366710 cites W2565001539 @default.
- W4210366710 cites W2570501755 @default.
- W4210366710 cites W2619383789 @default.
- W4210366710 cites W2747682299 @default.
- W4210366710 cites W2765937703 @default.
- W4210366710 cites W2788411055 @default.
- W4210366710 cites W2890355299 @default.
- W4210366710 cites W2905446337 @default.
- W4210366710 cites W2914755028 @default.
- W4210366710 cites W2939529096 @default.
- W4210366710 cites W2950095140 @default.
- W4210366710 cites W2951791429 @default.
- W4210366710 cites W2954257334 @default.
- W4210366710 cites W2954648193 @default.
- W4210366710 cites W2956497647 @default.
- W4210366710 cites W2960318892 @default.
- W4210366710 cites W2969895489 @default.
- W4210366710 cites W2983489878 @default.
- W4210366710 cites W3018770027 @default.
- W4210366710 cites W3044615752 @default.
- W4210366710 cites W4240294902 @default.
- W4210366710 cites W789868019 @default.
- W4210366710 doi "https://doi.org/10.1016/j.asoc.2022.108535" @default.
- W4210366710 hasPublicationYear "2022" @default.
- W4210366710 type Work @default.
- W4210366710 citedByCount "4" @default.
- W4210366710 countsByYear W42103667102023 @default.
- W4210366710 crossrefType "journal-article" @default.
- W4210366710 hasAuthorship W4210366710A5043402158 @default.
- W4210366710 hasAuthorship W4210366710A5043769506 @default.
- W4210366710 hasAuthorship W4210366710A5048671602 @default.
- W4210366710 hasAuthorship W4210366710A5078170790 @default.
- W4210366710 hasAuthorship W4210366710A5088560375 @default.
- W4210366710 hasConcept C127313418 @default.
- W4210366710 hasConcept C153294291 @default.
- W4210366710 hasConcept C154945302 @default.
- W4210366710 hasConcept C187320778 @default.
- W4210366710 hasConcept C18903297 @default.
- W4210366710 hasConcept C205649164 @default.
- W4210366710 hasConcept C24749216 @default.
- W4210366710 hasConcept C39432304 @default.
- W4210366710 hasConcept C41008148 @default.
- W4210366710 hasConcept C50477045 @default.
- W4210366710 hasConcept C58166 @default.
- W4210366710 hasConcept C76886044 @default.
- W4210366710 hasConcept C86803240 @default.
- W4210366710 hasConceptScore W4210366710C127313418 @default.
- W4210366710 hasConceptScore W4210366710C153294291 @default.
- W4210366710 hasConceptScore W4210366710C154945302 @default.
- W4210366710 hasConceptScore W4210366710C187320778 @default.
- W4210366710 hasConceptScore W4210366710C18903297 @default.
- W4210366710 hasConceptScore W4210366710C205649164 @default.
- W4210366710 hasConceptScore W4210366710C24749216 @default.
- W4210366710 hasConceptScore W4210366710C39432304 @default.
- W4210366710 hasConceptScore W4210366710C41008148 @default.
- W4210366710 hasConceptScore W4210366710C50477045 @default.
- W4210366710 hasConceptScore W4210366710C58166 @default.
- W4210366710 hasConceptScore W4210366710C76886044 @default.
- W4210366710 hasConceptScore W4210366710C86803240 @default.