Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210367534> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4210367534 abstract "One of the contemporary issues present in medical image segmentation is the segmentation of the Retinal blood vessels. This is because many diseases can be accurately identified from the vascular structure of the retina and hence can be treated early and diagnosed thoroughly. Manual segmentation is hectic, cumbersome, time consuming and also error-prone. Hence there is a need for automatic vessel segmentation which can be a better technological advancement in the medical field. Some of the segmentation methods which were proposed previously have problems of low segmentation accuracy, incomplete segmentation and a large model size. With the progress of deep learning and convolutional neural networks several U-net based architectures were extensively used for this task which offered reliable segmentation results. In this paper, we proposed a light weight U-net based architecture which provides comparable accuracy with much less total parameters." @default.
- W4210367534 created "2022-02-08" @default.
- W4210367534 creator A5007371983 @default.
- W4210367534 creator A5014131883 @default.
- W4210367534 creator A5079768938 @default.
- W4210367534 date "2021-12-19" @default.
- W4210367534 modified "2023-09-25" @default.
- W4210367534 title "VesselXnet - A lightweight and efficient encoder-decoder based model for Retinal Vessel Segmentation" @default.
- W4210367534 cites W1787088581 @default.
- W4210367534 cites W1901699690 @default.
- W4210367534 cites W1978917654 @default.
- W4210367534 cites W2038469443 @default.
- W4210367534 cites W2044880603 @default.
- W4210367534 cites W2045227075 @default.
- W4210367534 cites W2093545979 @default.
- W4210367534 cites W2105685332 @default.
- W4210367534 cites W2106883050 @default.
- W4210367534 cites W2127302541 @default.
- W4210367534 cites W2130054905 @default.
- W4210367534 cites W2131223615 @default.
- W4210367534 cites W2145305441 @default.
- W4210367534 cites W2150769593 @default.
- W4210367534 cites W2166524747 @default.
- W4210367534 cites W2412782625 @default.
- W4210367534 cites W2987039128 @default.
- W4210367534 cites W3090141967 @default.
- W4210367534 cites W3133904453 @default.
- W4210367534 cites W3204269019 @default.
- W4210367534 doi "https://doi.org/10.1109/indicon52576.2021.9691635" @default.
- W4210367534 hasPublicationYear "2021" @default.
- W4210367534 type Work @default.
- W4210367534 citedByCount "1" @default.
- W4210367534 countsByYear W42103675342022 @default.
- W4210367534 crossrefType "proceedings-article" @default.
- W4210367534 hasAuthorship W4210367534A5007371983 @default.
- W4210367534 hasAuthorship W4210367534A5014131883 @default.
- W4210367534 hasAuthorship W4210367534A5079768938 @default.
- W4210367534 hasConcept C108583219 @default.
- W4210367534 hasConcept C111919701 @default.
- W4210367534 hasConcept C118505674 @default.
- W4210367534 hasConcept C124504099 @default.
- W4210367534 hasConcept C127413603 @default.
- W4210367534 hasConcept C153180895 @default.
- W4210367534 hasConcept C154945302 @default.
- W4210367534 hasConcept C201995342 @default.
- W4210367534 hasConcept C25694479 @default.
- W4210367534 hasConcept C2780451532 @default.
- W4210367534 hasConcept C31972630 @default.
- W4210367534 hasConcept C41008148 @default.
- W4210367534 hasConcept C65885262 @default.
- W4210367534 hasConcept C81363708 @default.
- W4210367534 hasConcept C89600930 @default.
- W4210367534 hasConceptScore W4210367534C108583219 @default.
- W4210367534 hasConceptScore W4210367534C111919701 @default.
- W4210367534 hasConceptScore W4210367534C118505674 @default.
- W4210367534 hasConceptScore W4210367534C124504099 @default.
- W4210367534 hasConceptScore W4210367534C127413603 @default.
- W4210367534 hasConceptScore W4210367534C153180895 @default.
- W4210367534 hasConceptScore W4210367534C154945302 @default.
- W4210367534 hasConceptScore W4210367534C201995342 @default.
- W4210367534 hasConceptScore W4210367534C25694479 @default.
- W4210367534 hasConceptScore W4210367534C2780451532 @default.
- W4210367534 hasConceptScore W4210367534C31972630 @default.
- W4210367534 hasConceptScore W4210367534C41008148 @default.
- W4210367534 hasConceptScore W4210367534C65885262 @default.
- W4210367534 hasConceptScore W4210367534C81363708 @default.
- W4210367534 hasConceptScore W4210367534C89600930 @default.
- W4210367534 hasLocation W42103675341 @default.
- W4210367534 hasOpenAccess W4210367534 @default.
- W4210367534 hasPrimaryLocation W42103675341 @default.
- W4210367534 hasRelatedWork W1507266234 @default.
- W4210367534 hasRelatedWork W1669643531 @default.
- W4210367534 hasRelatedWork W2069711651 @default.
- W4210367534 hasRelatedWork W2117664411 @default.
- W4210367534 hasRelatedWork W2117933325 @default.
- W4210367534 hasRelatedWork W2549936415 @default.
- W4210367534 hasRelatedWork W2558375057 @default.
- W4210367534 hasRelatedWork W2897195263 @default.
- W4210367534 hasRelatedWork W3197341992 @default.
- W4210367534 hasRelatedWork W1967061043 @default.
- W4210367534 isParatext "false" @default.
- W4210367534 isRetracted "false" @default.
- W4210367534 workType "article" @default.