Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210367634> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4210367634 abstract "<sec> <title>BACKGROUND</title> Clinical guidelines recommend screening for depression in the general adult population but recognizes that the optimum interval for screening is unknown. Ideal screening intervals should match the patient risk profiles. </sec> <sec> <title>OBJECTIVE</title> This study describes a predictive analytics approach for mining clinical and patient-reported data from a large clinical study for the identification of primary care patients at high risk for depression to match depression screening intervals with patient risk profiles. </sec> <sec> <title>METHODS</title> This paper analyzed data from a large safety-net primary care study for diabetes and depression. A regression-based data mining technique was used to examine 53 demographics, clinical variables, and patient-reported variables to develop three prediction models for major depression at 6, 12, and 18 months from baseline. Predictors with the strongest predictive power that require low information collection efforts were selected to develop the prediction models. Predictive accuracy was measured by the area under the receiver operating curve (AUROC) and was evaluated by 10-fold cross-validation. The effectiveness of the prediction algorithms in supporting clinical decision making for six “typical” types of patients was demonstrated. </sec> <sec> <title>RESULTS</title> The analysis included 923 patients who were nondepressed at the study baseline. Five patient-reported variables were selected in the prediction models to predict major depression at 6, 12, and 18 months: (1) Patient Health Questionnaire 2-item score; (2) the Sheehan Disability Scale; (3) previous problems with depression; (4) the diabetes symptoms scale; and (5) emotional burden of diabetes. All three depression prediction models had an AUROC>0.80, comparable with published depression prediction studies. Among the 6 “typical” types of patients, the algorithms suggest that patients who reported impaired daily functioning by health status are at an elevated risk for depression in all three periods. </sec> <sec> <title>CONCLUSIONS</title> This study demonstrated that leveraging patient-reported data and prediction models can help improve identification of high-risk patients and clinical decisions about the depression screening interval for diabetes patients. Implementation of this approach can be coupled with application of modern technologies such as telehealth and mobile health assessment for collecting patient-reported data to improve privacy, reducing stigma and costs, and promoting a personalized depression screening that matches screening intervals with patient risk profiles. </sec>" @default.
- W4210367634 created "2022-02-08" @default.
- W4210367634 creator A5006467264 @default.
- W4210367634 creator A5031364762 @default.
- W4210367634 date "2019-02-03" @default.
- W4210367634 modified "2023-09-28" @default.
- W4210367634 title "Use of Patient-Reported Data to Match Depression Screening Intervals With Depression Risk Profiles in Primary Care Patients With Diabetes: Development and Validation of Prediction Models for Major Depression (Preprint)" @default.
- W4210367634 cites W1845587167 @default.
- W4210367634 cites W1861477559 @default.
- W4210367634 cites W1956509155 @default.
- W4210367634 cites W1975970108 @default.
- W4210367634 cites W1978891587 @default.
- W4210367634 cites W1982104078 @default.
- W4210367634 cites W2012197362 @default.
- W4210367634 cites W2012958738 @default.
- W4210367634 cites W2018212828 @default.
- W4210367634 cites W2046667801 @default.
- W4210367634 cites W2062856136 @default.
- W4210367634 cites W2065455682 @default.
- W4210367634 cites W2067958944 @default.
- W4210367634 cites W2072945841 @default.
- W4210367634 cites W2095147819 @default.
- W4210367634 cites W2095459035 @default.
- W4210367634 cites W2100042557 @default.
- W4210367634 cites W2105789880 @default.
- W4210367634 cites W2108377771 @default.
- W4210367634 cites W2119862467 @default.
- W4210367634 cites W2147182129 @default.
- W4210367634 cites W2178573654 @default.
- W4210367634 cites W2254462287 @default.
- W4210367634 cites W2264853089 @default.
- W4210367634 cites W2332353023 @default.
- W4210367634 cites W2771812526 @default.
- W4210367634 cites W2799710177 @default.
- W4210367634 cites W2909785203 @default.
- W4210367634 doi "https://doi.org/10.2196/preprints.13610" @default.
- W4210367634 hasPublicationYear "2019" @default.
- W4210367634 type Work @default.
- W4210367634 citedByCount "0" @default.
- W4210367634 crossrefType "posted-content" @default.
- W4210367634 hasAuthorship W4210367634A5006467264 @default.
- W4210367634 hasAuthorship W4210367634A5031364762 @default.
- W4210367634 hasBestOaLocation W42103676342 @default.
- W4210367634 hasConcept C118552586 @default.
- W4210367634 hasConcept C119857082 @default.
- W4210367634 hasConcept C126322002 @default.
- W4210367634 hasConcept C139719470 @default.
- W4210367634 hasConcept C162324750 @default.
- W4210367634 hasConcept C2776867660 @default.
- W4210367634 hasConcept C2778529449 @default.
- W4210367634 hasConcept C2781381097 @default.
- W4210367634 hasConcept C2908647359 @default.
- W4210367634 hasConcept C3019858935 @default.
- W4210367634 hasConcept C41008148 @default.
- W4210367634 hasConcept C44249647 @default.
- W4210367634 hasConcept C45804977 @default.
- W4210367634 hasConcept C558461103 @default.
- W4210367634 hasConcept C58471807 @default.
- W4210367634 hasConcept C71924100 @default.
- W4210367634 hasConcept C99454951 @default.
- W4210367634 hasConceptScore W4210367634C118552586 @default.
- W4210367634 hasConceptScore W4210367634C119857082 @default.
- W4210367634 hasConceptScore W4210367634C126322002 @default.
- W4210367634 hasConceptScore W4210367634C139719470 @default.
- W4210367634 hasConceptScore W4210367634C162324750 @default.
- W4210367634 hasConceptScore W4210367634C2776867660 @default.
- W4210367634 hasConceptScore W4210367634C2778529449 @default.
- W4210367634 hasConceptScore W4210367634C2781381097 @default.
- W4210367634 hasConceptScore W4210367634C2908647359 @default.
- W4210367634 hasConceptScore W4210367634C3019858935 @default.
- W4210367634 hasConceptScore W4210367634C41008148 @default.
- W4210367634 hasConceptScore W4210367634C44249647 @default.
- W4210367634 hasConceptScore W4210367634C45804977 @default.
- W4210367634 hasConceptScore W4210367634C558461103 @default.
- W4210367634 hasConceptScore W4210367634C58471807 @default.
- W4210367634 hasConceptScore W4210367634C71924100 @default.
- W4210367634 hasConceptScore W4210367634C99454951 @default.
- W4210367634 hasLocation W42103676341 @default.
- W4210367634 hasLocation W42103676342 @default.
- W4210367634 hasOpenAccess W4210367634 @default.
- W4210367634 hasPrimaryLocation W42103676341 @default.
- W4210367634 hasRelatedWork W1321646 @default.
- W4210367634 hasRelatedWork W13356661 @default.
- W4210367634 hasRelatedWork W14020004 @default.
- W4210367634 hasRelatedWork W14719196 @default.
- W4210367634 hasRelatedWork W14968377 @default.
- W4210367634 hasRelatedWork W15311529 @default.
- W4210367634 hasRelatedWork W15922944 @default.
- W4210367634 hasRelatedWork W22670323 @default.
- W4210367634 hasRelatedWork W22838022 @default.
- W4210367634 hasRelatedWork W3967032 @default.
- W4210367634 isParatext "false" @default.
- W4210367634 isRetracted "false" @default.
- W4210367634 workType "article" @default.