Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210368301> ?p ?o ?g. }
- W4210368301 endingPage "2519" @default.
- W4210368301 startingPage "2494" @default.
- W4210368301 abstract "Inspired by the recent developments in risk sharing problems for the value at risk (VaR), the expected shortfall (ES), and the range value at risk (RVaR), we study the optimization of risk sharing for general tail risk measures. Explicit formulas of the inf-convolution and Pareto-optimal allocations are obtained in the case of a mixed collection of left and right VaRs, and in that of a VaR and another tail risk measure. The inf-convolution of tail risk measures is shown to be a tail risk measure with an aggregated tail parameter, a phenomenon very similar to the cases of VaR, ES, and RVaR. Optimal allocations are obtained in the settings of elliptical models and model uncertainty. In particular, several results are established for tail risk measures in the presence of model uncertainty, which may be of independent interest outside the framework of risk sharing. The technical conclusions are quite general without assuming any form of convexity of the tail risk measures. Our analysis generalizes in several directions the recent literature on quantile-based risk sharing." @default.
- W4210368301 created "2022-02-08" @default.
- W4210368301 creator A5009307834 @default.
- W4210368301 creator A5032727911 @default.
- W4210368301 creator A5054287275 @default.
- W4210368301 creator A5066155007 @default.
- W4210368301 date "2022-08-01" @default.
- W4210368301 modified "2023-10-16" @default.
- W4210368301 title "Inf-Convolution, Optimal Allocations, and Model Uncertainty for Tail Risk Measures" @default.
- W4210368301 cites W1106997938 @default.
- W4210368301 cites W1588274898 @default.
- W4210368301 cites W1647779468 @default.
- W4210368301 cites W2017356377 @default.
- W4210368301 cites W2019291268 @default.
- W4210368301 cites W2023147992 @default.
- W4210368301 cites W2067477904 @default.
- W4210368301 cites W2092463994 @default.
- W4210368301 cites W2114497214 @default.
- W4210368301 cites W2118856090 @default.
- W4210368301 cites W2132527237 @default.
- W4210368301 cites W2265892941 @default.
- W4210368301 cites W2492739463 @default.
- W4210368301 cites W2519987729 @default.
- W4210368301 cites W2594096445 @default.
- W4210368301 cites W2614528008 @default.
- W4210368301 cites W2766039207 @default.
- W4210368301 cites W2909397041 @default.
- W4210368301 cites W2937729660 @default.
- W4210368301 cites W2963450292 @default.
- W4210368301 cites W2963741739 @default.
- W4210368301 cites W2987963462 @default.
- W4210368301 cites W2995032837 @default.
- W4210368301 cites W3122801680 @default.
- W4210368301 cites W3123093843 @default.
- W4210368301 cites W3123924727 @default.
- W4210368301 cites W3124098225 @default.
- W4210368301 cites W3124112991 @default.
- W4210368301 cites W3124675969 @default.
- W4210368301 cites W3125265748 @default.
- W4210368301 cites W3128377704 @default.
- W4210368301 cites W3145997355 @default.
- W4210368301 cites W4237409883 @default.
- W4210368301 cites W4245777296 @default.
- W4210368301 cites W4248704747 @default.
- W4210368301 cites W4300560339 @default.
- W4210368301 doi "https://doi.org/10.1287/moor.2021.1217" @default.
- W4210368301 hasPublicationYear "2022" @default.
- W4210368301 type Work @default.
- W4210368301 citedByCount "3" @default.
- W4210368301 countsByYear W42103683012023 @default.
- W4210368301 crossrefType "journal-article" @default.
- W4210368301 hasAuthorship W4210368301A5009307834 @default.
- W4210368301 hasAuthorship W4210368301A5032727911 @default.
- W4210368301 hasAuthorship W4210368301A5054287275 @default.
- W4210368301 hasAuthorship W4210368301A5066155007 @default.
- W4210368301 hasConcept C106159729 @default.
- W4210368301 hasConcept C118671147 @default.
- W4210368301 hasConcept C119857082 @default.
- W4210368301 hasConcept C126255220 @default.
- W4210368301 hasConcept C148845407 @default.
- W4210368301 hasConcept C149782125 @default.
- W4210368301 hasConcept C162324750 @default.
- W4210368301 hasConcept C167548438 @default.
- W4210368301 hasConcept C187736073 @default.
- W4210368301 hasConcept C2776734221 @default.
- W4210368301 hasConcept C2780009758 @default.
- W4210368301 hasConcept C2780821815 @default.
- W4210368301 hasConcept C2781472820 @default.
- W4210368301 hasConcept C32896092 @default.
- W4210368301 hasConcept C33923547 @default.
- W4210368301 hasConcept C41008148 @default.
- W4210368301 hasConcept C45347329 @default.
- W4210368301 hasConcept C50644808 @default.
- W4210368301 hasConcept C5496284 @default.
- W4210368301 hasConcept C69257216 @default.
- W4210368301 hasConcept C72134830 @default.
- W4210368301 hasConcept C77088390 @default.
- W4210368301 hasConcept C94128290 @default.
- W4210368301 hasConceptScore W4210368301C106159729 @default.
- W4210368301 hasConceptScore W4210368301C118671147 @default.
- W4210368301 hasConceptScore W4210368301C119857082 @default.
- W4210368301 hasConceptScore W4210368301C126255220 @default.
- W4210368301 hasConceptScore W4210368301C148845407 @default.
- W4210368301 hasConceptScore W4210368301C149782125 @default.
- W4210368301 hasConceptScore W4210368301C162324750 @default.
- W4210368301 hasConceptScore W4210368301C167548438 @default.
- W4210368301 hasConceptScore W4210368301C187736073 @default.
- W4210368301 hasConceptScore W4210368301C2776734221 @default.
- W4210368301 hasConceptScore W4210368301C2780009758 @default.
- W4210368301 hasConceptScore W4210368301C2780821815 @default.
- W4210368301 hasConceptScore W4210368301C2781472820 @default.
- W4210368301 hasConceptScore W4210368301C32896092 @default.
- W4210368301 hasConceptScore W4210368301C33923547 @default.
- W4210368301 hasConceptScore W4210368301C41008148 @default.
- W4210368301 hasConceptScore W4210368301C45347329 @default.
- W4210368301 hasConceptScore W4210368301C50644808 @default.
- W4210368301 hasConceptScore W4210368301C5496284 @default.
- W4210368301 hasConceptScore W4210368301C69257216 @default.