Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210368486> ?p ?o ?g. }
- W4210368486 endingPage "226" @default.
- W4210368486 startingPage "218" @default.
- W4210368486 abstract "In gastric cancer (GC), there are four molecular subclasses that indicate whether patients respond to chemotherapy or immunotherapy, according to the TCGA. In clinical practice, however, not every patient undergoes molecular testing. Many laboratories have used well-implemented in situ techniques (IHC and EBER-ISH) to determine the subclasses in their cohorts. Although multiple stains are used, we show that a staining approach is unable to correctly discriminate all subclasses. As an alternative, we trained an ensemble convolutional neuronal network using bagging that can predict the molecular subclass directly from hematoxylin-eosin histology. We also identified patients with predicted intra-tumoral heterogeneity or with features from multiple subclasses, which challenges the postulated TCGA-based decision tree for GC subtyping. In the future, deep learning may enable targeted testing for molecular subtypes and targeted therapy for a broader group of GC patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland." @default.
- W4210368486 created "2022-02-08" @default.
- W4210368486 creator A5005254969 @default.
- W4210368486 creator A5029760404 @default.
- W4210368486 creator A5037207848 @default.
- W4210368486 creator A5045953059 @default.
- W4210368486 creator A5046521311 @default.
- W4210368486 creator A5066376775 @default.
- W4210368486 creator A5075261193 @default.
- W4210368486 creator A5078305808 @default.
- W4210368486 creator A5078543959 @default.
- W4210368486 creator A5083972355 @default.
- W4210368486 creator A5085549074 @default.
- W4210368486 creator A5089352173 @default.
- W4210368486 date "2022-03-31" @default.
- W4210368486 modified "2023-10-06" @default.
- W4210368486 title "Deep learning based on hematoxylin–eosin staining outperforms immunohistochemistry in predicting molecular subtypes of gastric adenocarcinoma" @default.
- W4210368486 cites W1477748411 @default.
- W4210368486 cites W1977653087 @default.
- W4210368486 cites W2015159529 @default.
- W4210368486 cites W2015743742 @default.
- W4210368486 cites W2015918488 @default.
- W4210368486 cites W2049397238 @default.
- W4210368486 cites W2126547130 @default.
- W4210368486 cites W2315980696 @default.
- W4210368486 cites W2324716781 @default.
- W4210368486 cites W2338576041 @default.
- W4210368486 cites W2430137238 @default.
- W4210368486 cites W2546425796 @default.
- W4210368486 cites W2587594303 @default.
- W4210368486 cites W2590748692 @default.
- W4210368486 cites W2598942602 @default.
- W4210368486 cites W2626196723 @default.
- W4210368486 cites W2737578400 @default.
- W4210368486 cites W2761668583 @default.
- W4210368486 cites W2887712435 @default.
- W4210368486 cites W2906311950 @default.
- W4210368486 cites W2947421002 @default.
- W4210368486 cites W2948930564 @default.
- W4210368486 cites W2949226441 @default.
- W4210368486 cites W2952481429 @default.
- W4210368486 cites W2963446712 @default.
- W4210368486 cites W2993178747 @default.
- W4210368486 cites W2999091210 @default.
- W4210368486 cites W3002737223 @default.
- W4210368486 cites W3006436762 @default.
- W4210368486 cites W3018647685 @default.
- W4210368486 cites W3036122989 @default.
- W4210368486 cites W3043602140 @default.
- W4210368486 cites W3045931042 @default.
- W4210368486 cites W3096056645 @default.
- W4210368486 cites W3103145119 @default.
- W4210368486 cites W3127211470 @default.
- W4210368486 cites W3133696224 @default.
- W4210368486 cites W3184036351 @default.
- W4210368486 cites W3195171687 @default.
- W4210368486 doi "https://doi.org/10.1002/path.5879" @default.
- W4210368486 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35119111" @default.
- W4210368486 hasPublicationYear "2022" @default.
- W4210368486 type Work @default.
- W4210368486 citedByCount "11" @default.
- W4210368486 countsByYear W42103684862022 @default.
- W4210368486 countsByYear W42103684862023 @default.
- W4210368486 crossrefType "journal-article" @default.
- W4210368486 hasAuthorship W4210368486A5005254969 @default.
- W4210368486 hasAuthorship W4210368486A5029760404 @default.
- W4210368486 hasAuthorship W4210368486A5037207848 @default.
- W4210368486 hasAuthorship W4210368486A5045953059 @default.
- W4210368486 hasAuthorship W4210368486A5046521311 @default.
- W4210368486 hasAuthorship W4210368486A5066376775 @default.
- W4210368486 hasAuthorship W4210368486A5075261193 @default.
- W4210368486 hasAuthorship W4210368486A5078305808 @default.
- W4210368486 hasAuthorship W4210368486A5078543959 @default.
- W4210368486 hasAuthorship W4210368486A5083972355 @default.
- W4210368486 hasAuthorship W4210368486A5085549074 @default.
- W4210368486 hasAuthorship W4210368486A5089352173 @default.
- W4210368486 hasBestOaLocation W42103684861 @default.
- W4210368486 hasConcept C104317684 @default.
- W4210368486 hasConcept C121608353 @default.
- W4210368486 hasConcept C125473707 @default.
- W4210368486 hasConcept C126322002 @default.
- W4210368486 hasConcept C142724271 @default.
- W4210368486 hasConcept C143998085 @default.
- W4210368486 hasConcept C199360897 @default.
- W4210368486 hasConcept C204232928 @default.
- W4210368486 hasConcept C207886595 @default.
- W4210368486 hasConcept C2781182431 @default.
- W4210368486 hasConcept C2781294515 @default.
- W4210368486 hasConcept C41008148 @default.
- W4210368486 hasConcept C55493867 @default.
- W4210368486 hasConcept C71924100 @default.
- W4210368486 hasConcept C74092355 @default.
- W4210368486 hasConcept C74864618 @default.
- W4210368486 hasConcept C83852419 @default.
- W4210368486 hasConcept C86803240 @default.
- W4210368486 hasConceptScore W4210368486C104317684 @default.
- W4210368486 hasConceptScore W4210368486C121608353 @default.
- W4210368486 hasConceptScore W4210368486C125473707 @default.