Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210376758> ?p ?o ?g. }
- W4210376758 endingPage "116600" @default.
- W4210376758 startingPage "116600" @default.
- W4210376758 abstract "The explosive growth of text data has attracted many researchers to explore the efficient method to extract valuable hidden information. Many technologies, especially deep learning methods, have achieved great success in text analysis. However, the most powerful methods always require a considerable quantity of data for training, which may suffer from imbalanced data in some cases. In this paper, we propose a network-based Convolution Neural Network (NCNN) to mitigate the effect of imbalanced data. The proposed model first generates new synthetic samples for the imbalanced data based on the random walking of the network. Then an extra layer called Polar Layer is introduced to connect the output from the network model of the text to the classical CNN. Two electing strategies (n-NCNN and x-NCNN) are proposed to improve the performance of NCNN further. In the experimental section, the proposed model is applied to Reuters 21578 and WebKb. By comparing with six approaches, we prove the effectiveness of the proposed NCNN model on the imbalanced text data." @default.
- W4210376758 created "2022-02-08" @default.
- W4210376758 creator A5030727493 @default.
- W4210376758 creator A5071320670 @default.
- W4210376758 creator A5084572739 @default.
- W4210376758 creator A5087477076 @default.
- W4210376758 date "2022-06-01" @default.
- W4210376758 modified "2023-10-17" @default.
- W4210376758 title "A network-based feature extraction model for imbalanced text data" @default.
- W4210376758 cites W1832693441 @default.
- W4210376758 cites W1967127231 @default.
- W4210376758 cites W1980428340 @default.
- W4210376758 cites W1988661732 @default.
- W4210376758 cites W1997568535 @default.
- W4210376758 cites W2015111077 @default.
- W4210376758 cites W2032617530 @default.
- W4210376758 cites W2052286803 @default.
- W4210376758 cites W2060029648 @default.
- W4210376758 cites W2118364625 @default.
- W4210376758 cites W2118978333 @default.
- W4210376758 cites W2122120365 @default.
- W4210376758 cites W2148143831 @default.
- W4210376758 cites W2151703435 @default.
- W4210376758 cites W2211192759 @default.
- W4210376758 cites W2296048872 @default.
- W4210376758 cites W2338318698 @default.
- W4210376758 cites W2496721172 @default.
- W4210376758 cites W2516328000 @default.
- W4210376758 cites W2516723902 @default.
- W4210376758 cites W2597485909 @default.
- W4210376758 cites W2740241688 @default.
- W4210376758 cites W2743703966 @default.
- W4210376758 cites W2772515592 @default.
- W4210376758 cites W2791394543 @default.
- W4210376758 cites W2802655046 @default.
- W4210376758 cites W2836242602 @default.
- W4210376758 cites W2884001105 @default.
- W4210376758 cites W2887758506 @default.
- W4210376758 cites W2890323646 @default.
- W4210376758 cites W2953122475 @default.
- W4210376758 cites W2962756421 @default.
- W4210376758 cites W2963026768 @default.
- W4210376758 cites W2990908872 @default.
- W4210376758 cites W3021895194 @default.
- W4210376758 cites W3098742166 @default.
- W4210376758 cites W3104097132 @default.
- W4210376758 cites W3105702840 @default.
- W4210376758 cites W3124821295 @default.
- W4210376758 cites W3134200545 @default.
- W4210376758 cites W3136624505 @default.
- W4210376758 doi "https://doi.org/10.1016/j.eswa.2022.116600" @default.
- W4210376758 hasPublicationYear "2022" @default.
- W4210376758 type Work @default.
- W4210376758 citedByCount "8" @default.
- W4210376758 countsByYear W42103767582022 @default.
- W4210376758 countsByYear W42103767582023 @default.
- W4210376758 crossrefType "journal-article" @default.
- W4210376758 hasAuthorship W4210376758A5030727493 @default.
- W4210376758 hasAuthorship W4210376758A5071320670 @default.
- W4210376758 hasAuthorship W4210376758A5084572739 @default.
- W4210376758 hasAuthorship W4210376758A5087477076 @default.
- W4210376758 hasConcept C119857082 @default.
- W4210376758 hasConcept C124101348 @default.
- W4210376758 hasConcept C138885662 @default.
- W4210376758 hasConcept C153180895 @default.
- W4210376758 hasConcept C154945302 @default.
- W4210376758 hasConcept C185592680 @default.
- W4210376758 hasConcept C2776401178 @default.
- W4210376758 hasConcept C41008148 @default.
- W4210376758 hasConcept C41895202 @default.
- W4210376758 hasConcept C43617362 @default.
- W4210376758 hasConcept C4725764 @default.
- W4210376758 hasConcept C52622490 @default.
- W4210376758 hasConceptScore W4210376758C119857082 @default.
- W4210376758 hasConceptScore W4210376758C124101348 @default.
- W4210376758 hasConceptScore W4210376758C138885662 @default.
- W4210376758 hasConceptScore W4210376758C153180895 @default.
- W4210376758 hasConceptScore W4210376758C154945302 @default.
- W4210376758 hasConceptScore W4210376758C185592680 @default.
- W4210376758 hasConceptScore W4210376758C2776401178 @default.
- W4210376758 hasConceptScore W4210376758C41008148 @default.
- W4210376758 hasConceptScore W4210376758C41895202 @default.
- W4210376758 hasConceptScore W4210376758C43617362 @default.
- W4210376758 hasConceptScore W4210376758C4725764 @default.
- W4210376758 hasConceptScore W4210376758C52622490 @default.
- W4210376758 hasLocation W42103767581 @default.
- W4210376758 hasOpenAccess W4210376758 @default.
- W4210376758 hasPrimaryLocation W42103767581 @default.
- W4210376758 hasRelatedWork W1964120219 @default.
- W4210376758 hasRelatedWork W2000165426 @default.
- W4210376758 hasRelatedWork W2114557664 @default.
- W4210376758 hasRelatedWork W2144059113 @default.
- W4210376758 hasRelatedWork W2146076056 @default.
- W4210376758 hasRelatedWork W2385132419 @default.
- W4210376758 hasRelatedWork W2546942002 @default.
- W4210376758 hasRelatedWork W2772780115 @default.
- W4210376758 hasRelatedWork W2811390910 @default.
- W4210376758 hasRelatedWork W3003836766 @default.