Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210381520> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4210381520 endingPage "197" @default.
- W4210381520 startingPage "162" @default.
- W4210381520 abstract "We discuss a Continuous Curvelet Transform (CCT), a transform f ↦ Γ f ( a , b , θ ) of functions f ( x 1 , x 2 ) on R 2 into a transform domain with continuous scale a > 0 , location b ∈ R 2 , and orientation θ ∈ [ 0 , 2 π ) . Here Γ f ( a , b , θ ) = 〈 f , γ a b θ 〉 projects f onto analyzing elements called curvelets γ a b θ which are smooth and of rapid decay away from an a by a rectangle with minor axis pointing in direction θ . We call them curvelets because this anisotropic behavior allows them to ‘track’ the behavior of singularities along curves. They are continuum scale/space/orientation analogs of the discrete frame of curvelets discussed in [E.J. Candès, F. Guo, New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction, Signal Process. 82 (2002) 1519–1543; E.J. Candès, L. Demanet, Curvelets and Fourier integral operators, C. R. Acad. Sci. Paris, Sér. I (2003) 395–398; E.J. Candès, D.L. Donoho, Curvelets: a surprisingly effective nonadaptive representation of objects with edges, in: A. Cohen, C. Rabut, L.L. Schumaker (Eds.), Curve and Surface Fitting: Saint-Malo 1999, Vanderbilt Univ. Press, Nashville, TN, 2000]. We use the CCT to analyze several objects having singularities at points, along lines, and along smooth curves. These examples show that for fixed ( x 0 , θ 0 ) , Γ f ( a , x 0 , θ 0 ) decays rapidly as a → 0 if f is smooth near x 0 , or if the singularity of f at x 0 is oriented in a different direction than θ 0 . Generalizing these examples, we show that decay properties of Γ f ( a , x 0 , θ 0 ) for fixed ( x 0 , θ 0 ) , as a → 0 can precisely identify the wavefront set and the H m -wavefront set of a distribution. In effect, the wavefront set of a distribution is the closure of the set of ( x 0 , θ 0 ) near which Γ f ( a , x , θ ) is not of rapid decay as a → 0 ; the H m -wavefront set is the closure of those points ( x 0 , θ 0 ) where the ‘directional parabolic square function’ S m ( x , θ ) = ( ∫ | Γ f ( a , x , θ ) | 2 d a a 3 + 2 m ) 1 / 2 is not locally integrable. The C C T is closely related to a continuous transform pioneered by Hart Smith in his study of Fourier Integral Operators. Smith's transform is based on strict affine parabolic scaling of a single mother wavelet, while for the transform we discuss, the generating wavelet changes (slightly) scale by scale. The C C T can also be compared to the FBI (Fourier–Bros–Iagolnitzer) and Wave Packets (Cordoba–Fefferman) transforms. We describe their similarities and differences in resolving the wavefront set." @default.
- W4210381520 created "2022-02-08" @default.
- W4210381520 creator A5065355421 @default.
- W4210381520 creator A5072495084 @default.
- W4210381520 date "2005-09-01" @default.
- W4210381520 modified "2023-09-26" @default.
- W4210381520 title "Continuous curvelet transform" @default.
- W4210381520 cites W1972862825 @default.
- W4210381520 cites W1985814121 @default.
- W4210381520 cites W1997146646 @default.
- W4210381520 cites W2008419427 @default.
- W4210381520 cites W2032249561 @default.
- W4210381520 cites W2065723160 @default.
- W4210381520 cites W2067398582 @default.
- W4210381520 cites W2069912449 @default.
- W4210381520 cites W2107790757 @default.
- W4210381520 cites W2498365868 @default.
- W4210381520 doi "https://doi.org/10.1016/j.acha.2005.02.003" @default.
- W4210381520 hasPublicationYear "2005" @default.
- W4210381520 type Work @default.
- W4210381520 citedByCount "197" @default.
- W4210381520 countsByYear W42103815202012 @default.
- W4210381520 countsByYear W42103815202013 @default.
- W4210381520 countsByYear W42103815202014 @default.
- W4210381520 countsByYear W42103815202015 @default.
- W4210381520 countsByYear W42103815202016 @default.
- W4210381520 countsByYear W42103815202017 @default.
- W4210381520 countsByYear W42103815202018 @default.
- W4210381520 countsByYear W42103815202019 @default.
- W4210381520 countsByYear W42103815202020 @default.
- W4210381520 countsByYear W42103815202021 @default.
- W4210381520 countsByYear W42103815202022 @default.
- W4210381520 countsByYear W42103815202023 @default.
- W4210381520 crossrefType "journal-article" @default.
- W4210381520 hasAuthorship W4210381520A5065355421 @default.
- W4210381520 hasAuthorship W4210381520A5072495084 @default.
- W4210381520 hasBestOaLocation W42103815201 @default.
- W4210381520 hasConcept C102519508 @default.
- W4210381520 hasConcept C114614502 @default.
- W4210381520 hasConcept C131720326 @default.
- W4210381520 hasConcept C134306372 @default.
- W4210381520 hasConcept C154945302 @default.
- W4210381520 hasConcept C16171025 @default.
- W4210381520 hasConcept C16345878 @default.
- W4210381520 hasConcept C196216189 @default.
- W4210381520 hasConcept C200052193 @default.
- W4210381520 hasConcept C202444582 @default.
- W4210381520 hasConcept C2524010 @default.
- W4210381520 hasConcept C2781302577 @default.
- W4210381520 hasConcept C33923547 @default.
- W4210381520 hasConcept C41008148 @default.
- W4210381520 hasConcept C47432892 @default.
- W4210381520 hasConceptScore W4210381520C102519508 @default.
- W4210381520 hasConceptScore W4210381520C114614502 @default.
- W4210381520 hasConceptScore W4210381520C131720326 @default.
- W4210381520 hasConceptScore W4210381520C134306372 @default.
- W4210381520 hasConceptScore W4210381520C154945302 @default.
- W4210381520 hasConceptScore W4210381520C16171025 @default.
- W4210381520 hasConceptScore W4210381520C16345878 @default.
- W4210381520 hasConceptScore W4210381520C196216189 @default.
- W4210381520 hasConceptScore W4210381520C200052193 @default.
- W4210381520 hasConceptScore W4210381520C202444582 @default.
- W4210381520 hasConceptScore W4210381520C2524010 @default.
- W4210381520 hasConceptScore W4210381520C2781302577 @default.
- W4210381520 hasConceptScore W4210381520C33923547 @default.
- W4210381520 hasConceptScore W4210381520C41008148 @default.
- W4210381520 hasConceptScore W4210381520C47432892 @default.
- W4210381520 hasIssue "2" @default.
- W4210381520 hasLocation W42103815201 @default.
- W4210381520 hasLocation W42103815202 @default.
- W4210381520 hasOpenAccess W4210381520 @default.
- W4210381520 hasPrimaryLocation W42103815201 @default.
- W4210381520 hasRelatedWork W2027581003 @default.
- W4210381520 hasRelatedWork W2061351511 @default.
- W4210381520 hasRelatedWork W2079260107 @default.
- W4210381520 hasRelatedWork W2352805550 @default.
- W4210381520 hasRelatedWork W2580805009 @default.
- W4210381520 hasRelatedWork W3003685620 @default.
- W4210381520 hasRelatedWork W4220691124 @default.
- W4210381520 hasRelatedWork W4251872027 @default.
- W4210381520 hasRelatedWork W4283387618 @default.
- W4210381520 hasRelatedWork W2515766247 @default.
- W4210381520 hasVolume "19" @default.
- W4210381520 isParatext "false" @default.
- W4210381520 isRetracted "false" @default.
- W4210381520 workType "article" @default.