Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210381648> ?p ?o ?g. }
- W4210381648 endingPage "417" @default.
- W4210381648 startingPage "417" @default.
- W4210381648 abstract "The total metabolic tumor volume (TMTV) is a new prognostic factor in lymphomas that could benefit from automation with deep learning convolutional neural networks (CNN). Manual TMTV segmentations of 1218 baseline 18FDG-PET/CT have been used for training. A 3D V-NET model has been trained to generate segmentations with soft dice loss. Ground truth segmentation has been generated using a combination of different thresholds (TMTVprob), applied to the manual region of interest (Otsu, relative 41% and SUV 2.5 and 4 cutoffs). In total, 407 and 405 PET/CT were used for test and validation datasets, respectively. The training was completed in 93 h. In comparison with the TMTVprob, mean dice reached 0.84 in the training set, 0.84 in the validation set and 0.76 in the test set. The median dice scores for each TMTV methodology were 0.77, 0.70 and 0.90 for 41%, 2.5 and 4 cutoff, respectively. Differences in the median TMTV between manual and predicted TMTV were 32, 147 and 5 mL. Spearman's correlations between manual and predicted TMTV were 0.92, 0.95 and 0.98. This generic deep learning model to compute TMTV in lymphomas can drastically reduce computation time of TMTV." @default.
- W4210381648 created "2022-02-08" @default.
- W4210381648 creator A5014639728 @default.
- W4210381648 creator A5016122215 @default.
- W4210381648 creator A5033073385 @default.
- W4210381648 creator A5050120067 @default.
- W4210381648 creator A5051605599 @default.
- W4210381648 creator A5062305482 @default.
- W4210381648 creator A5065542353 @default.
- W4210381648 creator A5075909561 @default.
- W4210381648 creator A5076089300 @default.
- W4210381648 creator A5077504536 @default.
- W4210381648 creator A5078120222 @default.
- W4210381648 creator A5078342005 @default.
- W4210381648 creator A5079749862 @default.
- W4210381648 creator A5082685353 @default.
- W4210381648 date "2022-02-06" @default.
- W4210381648 modified "2023-10-16" @default.
- W4210381648 title "Deep Learning Approach to Automatize TMTV Calculations Regardless of Segmentation Methodology for Major FDG-Avid Lymphomas" @default.
- W4210381648 cites W1967362871 @default.
- W4210381648 cites W1972232210 @default.
- W4210381648 cites W2014254425 @default.
- W4210381648 cites W2063563316 @default.
- W4210381648 cites W2133059825 @default.
- W4210381648 cites W2206977664 @default.
- W4210381648 cites W2507512417 @default.
- W4210381648 cites W2787594587 @default.
- W4210381648 cites W2798083690 @default.
- W4210381648 cites W2891543930 @default.
- W4210381648 cites W2909797130 @default.
- W4210381648 cites W2967671420 @default.
- W4210381648 cites W2985889171 @default.
- W4210381648 cites W2986296449 @default.
- W4210381648 cites W3021843318 @default.
- W4210381648 cites W3035435057 @default.
- W4210381648 cites W3043558719 @default.
- W4210381648 cites W3093550081 @default.
- W4210381648 cites W3104690726 @default.
- W4210381648 cites W3113144984 @default.
- W4210381648 cites W3123982987 @default.
- W4210381648 cites W3133661165 @default.
- W4210381648 cites W3190390978 @default.
- W4210381648 doi "https://doi.org/10.3390/diagnostics12020417" @default.
- W4210381648 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35204515" @default.
- W4210381648 hasPublicationYear "2022" @default.
- W4210381648 type Work @default.
- W4210381648 citedByCount "9" @default.
- W4210381648 countsByYear W42103816482022 @default.
- W4210381648 countsByYear W42103816482023 @default.
- W4210381648 crossrefType "journal-article" @default.
- W4210381648 hasAuthorship W4210381648A5014639728 @default.
- W4210381648 hasAuthorship W4210381648A5016122215 @default.
- W4210381648 hasAuthorship W4210381648A5033073385 @default.
- W4210381648 hasAuthorship W4210381648A5050120067 @default.
- W4210381648 hasAuthorship W4210381648A5051605599 @default.
- W4210381648 hasAuthorship W4210381648A5062305482 @default.
- W4210381648 hasAuthorship W4210381648A5065542353 @default.
- W4210381648 hasAuthorship W4210381648A5075909561 @default.
- W4210381648 hasAuthorship W4210381648A5076089300 @default.
- W4210381648 hasAuthorship W4210381648A5077504536 @default.
- W4210381648 hasAuthorship W4210381648A5078120222 @default.
- W4210381648 hasAuthorship W4210381648A5078342005 @default.
- W4210381648 hasAuthorship W4210381648A5079749862 @default.
- W4210381648 hasAuthorship W4210381648A5082685353 @default.
- W4210381648 hasBestOaLocation W42103816481 @default.
- W4210381648 hasConcept C108583219 @default.
- W4210381648 hasConcept C154945302 @default.
- W4210381648 hasConcept C169903167 @default.
- W4210381648 hasConcept C41008148 @default.
- W4210381648 hasConcept C71924100 @default.
- W4210381648 hasConcept C81363708 @default.
- W4210381648 hasConcept C89600930 @default.
- W4210381648 hasConceptScore W4210381648C108583219 @default.
- W4210381648 hasConceptScore W4210381648C154945302 @default.
- W4210381648 hasConceptScore W4210381648C169903167 @default.
- W4210381648 hasConceptScore W4210381648C41008148 @default.
- W4210381648 hasConceptScore W4210381648C71924100 @default.
- W4210381648 hasConceptScore W4210381648C81363708 @default.
- W4210381648 hasConceptScore W4210381648C89600930 @default.
- W4210381648 hasIssue "2" @default.
- W4210381648 hasLocation W42103816481 @default.
- W4210381648 hasLocation W42103816482 @default.
- W4210381648 hasLocation W42103816483 @default.
- W4210381648 hasLocation W42103816484 @default.
- W4210381648 hasOpenAccess W4210381648 @default.
- W4210381648 hasPrimaryLocation W42103816481 @default.
- W4210381648 hasRelatedWork W2731899572 @default.
- W4210381648 hasRelatedWork W2790662084 @default.
- W4210381648 hasRelatedWork W2999805992 @default.
- W4210381648 hasRelatedWork W3011074480 @default.
- W4210381648 hasRelatedWork W3116150086 @default.
- W4210381648 hasRelatedWork W3133861977 @default.
- W4210381648 hasRelatedWork W4200173597 @default.
- W4210381648 hasRelatedWork W4291897433 @default.
- W4210381648 hasRelatedWork W4312417841 @default.
- W4210381648 hasRelatedWork W4321369474 @default.
- W4210381648 hasVolume "12" @default.
- W4210381648 isParatext "false" @default.