Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210394906> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4210394906 endingPage "424" @default.
- W4210394906 startingPage "424" @default.
- W4210394906 abstract "Sensors used for wastewater flow measurements need to be robust and are, consequently, expensive pieces of hardware that must be maintained regularly to function correctly in the hazardous environment of sewers. Remote sensing can remedy these issues, as the lack of direct contact between sensor and sewage reduces the hardware demands and need for maintenance. This paper utilizes off-the-shelf cameras and machine learning algorithms to estimate the discharge in open sewer channels. We use convolutional neural networks to extract the water level and surface velocity from camera images directly, without the need for artificial markers in the sewage stream. Under optimal conditions, our method estimates the water level with an accuracy of ±2.48% and the surface velocity with an accuracy of ±2.08% in a laboratory setting—a performance comparable to other state-of-the-art solutions (e.g., in situ measurements)." @default.
- W4210394906 created "2022-02-08" @default.
- W4210394906 creator A5018620175 @default.
- W4210394906 creator A5026063058 @default.
- W4210394906 creator A5057837475 @default.
- W4210394906 creator A5088564496 @default.
- W4210394906 date "2022-01-29" @default.
- W4210394906 modified "2023-09-26" @default.
- W4210394906 title "Flow Measurements Derived from Camera Footage Using an Open-Source Ecosystem" @default.
- W4210394906 cites W1504073505 @default.
- W4210394906 cites W1771314880 @default.
- W4210394906 cites W1828305336 @default.
- W4210394906 cites W1967427295 @default.
- W4210394906 cites W1969824491 @default.
- W4210394906 cites W1996532044 @default.
- W4210394906 cites W2132113382 @default.
- W4210394906 cites W2590919906 @default.
- W4210394906 cites W2618530766 @default.
- W4210394906 cites W2890404982 @default.
- W4210394906 cites W2902418758 @default.
- W4210394906 cites W2936174514 @default.
- W4210394906 cites W2963881378 @default.
- W4210394906 cites W3036205077 @default.
- W4210394906 cites W3130444584 @default.
- W4210394906 cites W3189170245 @default.
- W4210394906 doi "https://doi.org/10.3390/w14030424" @default.
- W4210394906 hasPublicationYear "2022" @default.
- W4210394906 type Work @default.
- W4210394906 citedByCount "5" @default.
- W4210394906 countsByYear W42103949062022 @default.
- W4210394906 countsByYear W42103949062023 @default.
- W4210394906 crossrefType "journal-article" @default.
- W4210394906 hasAuthorship W4210394906A5018620175 @default.
- W4210394906 hasAuthorship W4210394906A5026063058 @default.
- W4210394906 hasAuthorship W4210394906A5057837475 @default.
- W4210394906 hasAuthorship W4210394906A5088564496 @default.
- W4210394906 hasBestOaLocation W42103949061 @default.
- W4210394906 hasConcept C127313418 @default.
- W4210394906 hasConcept C127413603 @default.
- W4210394906 hasConcept C154945302 @default.
- W4210394906 hasConcept C190714865 @default.
- W4210394906 hasConcept C199104240 @default.
- W4210394906 hasConcept C22507642 @default.
- W4210394906 hasConcept C2524010 @default.
- W4210394906 hasConcept C33923547 @default.
- W4210394906 hasConcept C38349280 @default.
- W4210394906 hasConcept C39432304 @default.
- W4210394906 hasConcept C41008148 @default.
- W4210394906 hasConcept C548081761 @default.
- W4210394906 hasConcept C58790150 @default.
- W4210394906 hasConcept C62649853 @default.
- W4210394906 hasConcept C81363708 @default.
- W4210394906 hasConcept C87717796 @default.
- W4210394906 hasConcept C94061648 @default.
- W4210394906 hasConceptScore W4210394906C127313418 @default.
- W4210394906 hasConceptScore W4210394906C127413603 @default.
- W4210394906 hasConceptScore W4210394906C154945302 @default.
- W4210394906 hasConceptScore W4210394906C190714865 @default.
- W4210394906 hasConceptScore W4210394906C199104240 @default.
- W4210394906 hasConceptScore W4210394906C22507642 @default.
- W4210394906 hasConceptScore W4210394906C2524010 @default.
- W4210394906 hasConceptScore W4210394906C33923547 @default.
- W4210394906 hasConceptScore W4210394906C38349280 @default.
- W4210394906 hasConceptScore W4210394906C39432304 @default.
- W4210394906 hasConceptScore W4210394906C41008148 @default.
- W4210394906 hasConceptScore W4210394906C548081761 @default.
- W4210394906 hasConceptScore W4210394906C58790150 @default.
- W4210394906 hasConceptScore W4210394906C62649853 @default.
- W4210394906 hasConceptScore W4210394906C81363708 @default.
- W4210394906 hasConceptScore W4210394906C87717796 @default.
- W4210394906 hasConceptScore W4210394906C94061648 @default.
- W4210394906 hasIssue "3" @default.
- W4210394906 hasLocation W42103949061 @default.
- W4210394906 hasLocation W42103949062 @default.
- W4210394906 hasOpenAccess W4210394906 @default.
- W4210394906 hasPrimaryLocation W42103949061 @default.
- W4210394906 hasRelatedWork W1547839164 @default.
- W4210394906 hasRelatedWork W2072108058 @default.
- W4210394906 hasRelatedWork W2154497378 @default.
- W4210394906 hasRelatedWork W2292225879 @default.
- W4210394906 hasRelatedWork W2768518126 @default.
- W4210394906 hasRelatedWork W2804758138 @default.
- W4210394906 hasRelatedWork W3162167414 @default.
- W4210394906 hasRelatedWork W3186796304 @default.
- W4210394906 hasRelatedWork W3200352738 @default.
- W4210394906 hasRelatedWork W4319946471 @default.
- W4210394906 hasVolume "14" @default.
- W4210394906 isParatext "false" @default.
- W4210394906 isRetracted "false" @default.
- W4210394906 workType "article" @default.