Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210395449> ?p ?o ?g. }
- W4210395449 endingPage "2228" @default.
- W4210395449 startingPage "2218" @default.
- W4210395449 abstract "ABSTRACT Most recently, machine learning has been used to study the dynamics of integrable Hamiltonian systems and the chaotic 3-body problem. In this work, we consider an intermediate case of regular motion in a non-integrable system: the behaviour of objects in the 2:3 mean motion resonance with Neptune. We show that, given initial data from a short 6250 yr numerical integration, the best-trained artificial neural network (ANN) can predict the trajectories of the 2:3 resonators over the subsequent 18 750 yr evolution, covering a full libration cycle over the combined time period. By comparing our ANN’s prediction of the resonant angle to the outcome of numerical integrations, the former can predict the resonant angle with an accuracy as small as of a few degrees only, while it has the advantage of considerably saving computational time. More specifically, the trained ANN can effectively measure the resonant amplitudes of the 2:3 resonators, and thus provides a fast approach that can identify the resonant candidates. This may be helpful in classifying a huge population of KBOs to be discovered in future surveys." @default.
- W4210395449 created "2022-02-08" @default.
- W4210395449 creator A5017967281 @default.
- W4210395449 creator A5044936099 @default.
- W4210395449 creator A5063866151 @default.
- W4210395449 creator A5064035265 @default.
- W4210395449 date "2022-01-28" @default.
- W4210395449 modified "2023-10-14" @default.
- W4210395449 title "Machine-learning prediction for mean motion resonance behaviour – The planar case" @default.
- W4210395449 cites W1498436455 @default.
- W4210395449 cites W1995341919 @default.
- W4210395449 cites W2021354639 @default.
- W4210395449 cites W2040870580 @default.
- W4210395449 cites W2043880644 @default.
- W4210395449 cites W2051994485 @default.
- W4210395449 cites W2101042800 @default.
- W4210395449 cites W2128959520 @default.
- W4210395449 cites W2200220541 @default.
- W4210395449 cites W2344812086 @default.
- W4210395449 cites W2539415518 @default.
- W4210395449 cites W2601707599 @default.
- W4210395449 cites W2773149169 @default.
- W4210395449 cites W2782593021 @default.
- W4210395449 cites W2890036961 @default.
- W4210395449 cites W2901217044 @default.
- W4210395449 cites W2938157087 @default.
- W4210395449 cites W2949142645 @default.
- W4210395449 cites W2952527540 @default.
- W4210395449 cites W2974648226 @default.
- W4210395449 cites W2980448402 @default.
- W4210395449 cites W2998320551 @default.
- W4210395449 cites W3000410318 @default.
- W4210395449 cites W3007066689 @default.
- W4210395449 cites W3023192521 @default.
- W4210395449 cites W3038302474 @default.
- W4210395449 cites W3042069397 @default.
- W4210395449 cites W3043645409 @default.
- W4210395449 cites W3048632092 @default.
- W4210395449 cites W3080400811 @default.
- W4210395449 cites W3098814595 @default.
- W4210395449 cites W3098973781 @default.
- W4210395449 cites W3099242510 @default.
- W4210395449 cites W3100050954 @default.
- W4210395449 cites W3101963374 @default.
- W4210395449 cites W3103693394 @default.
- W4210395449 cites W3104062568 @default.
- W4210395449 cites W3104231256 @default.
- W4210395449 cites W3105952832 @default.
- W4210395449 cites W3150365583 @default.
- W4210395449 cites W3168571772 @default.
- W4210395449 doi "https://doi.org/10.1093/mnras/stac166" @default.
- W4210395449 hasPublicationYear "2022" @default.
- W4210395449 type Work @default.
- W4210395449 citedByCount "4" @default.
- W4210395449 countsByYear W42103954492022 @default.
- W4210395449 countsByYear W42103954492023 @default.
- W4210395449 crossrefType "journal-article" @default.
- W4210395449 hasAuthorship W4210395449A5017967281 @default.
- W4210395449 hasAuthorship W4210395449A5044936099 @default.
- W4210395449 hasAuthorship W4210395449A5063866151 @default.
- W4210395449 hasAuthorship W4210395449A5064035265 @default.
- W4210395449 hasBestOaLocation W42103954492 @default.
- W4210395449 hasConcept C104114177 @default.
- W4210395449 hasConcept C11413529 @default.
- W4210395449 hasConcept C120665830 @default.
- W4210395449 hasConcept C121332964 @default.
- W4210395449 hasConcept C121684516 @default.
- W4210395449 hasConcept C121864883 @default.
- W4210395449 hasConcept C126255220 @default.
- W4210395449 hasConcept C130787639 @default.
- W4210395449 hasConcept C134786449 @default.
- W4210395449 hasConcept C139210041 @default.
- W4210395449 hasConcept C144024400 @default.
- W4210395449 hasConcept C149923435 @default.
- W4210395449 hasConcept C154945302 @default.
- W4210395449 hasConcept C180205008 @default.
- W4210395449 hasConcept C197464742 @default.
- W4210395449 hasConcept C200741047 @default.
- W4210395449 hasConcept C27638517 @default.
- W4210395449 hasConcept C2908647359 @default.
- W4210395449 hasConcept C33923547 @default.
- W4210395449 hasConcept C37914503 @default.
- W4210395449 hasConcept C41008148 @default.
- W4210395449 hasConcept C44870925 @default.
- W4210395449 hasConcept C50644808 @default.
- W4210395449 hasConcept C51244244 @default.
- W4210395449 hasConcept C62520636 @default.
- W4210395449 hasConcept C74650414 @default.
- W4210395449 hasConceptScore W4210395449C104114177 @default.
- W4210395449 hasConceptScore W4210395449C11413529 @default.
- W4210395449 hasConceptScore W4210395449C120665830 @default.
- W4210395449 hasConceptScore W4210395449C121332964 @default.
- W4210395449 hasConceptScore W4210395449C121684516 @default.
- W4210395449 hasConceptScore W4210395449C121864883 @default.
- W4210395449 hasConceptScore W4210395449C126255220 @default.
- W4210395449 hasConceptScore W4210395449C130787639 @default.
- W4210395449 hasConceptScore W4210395449C134786449 @default.
- W4210395449 hasConceptScore W4210395449C139210041 @default.