Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210400539> ?p ?o ?g. }
- W4210400539 endingPage "14125" @default.
- W4210400539 startingPage "14116" @default.
- W4210400539 abstract "State estimation methods used in cyber–physical systems (CPSs), such as smart grid, are vulnerable to false data injection attacks (FDIAs). Although substantial deep learning methods have been proposed to detect such attacks, deep neural networks (DNNs) are highly susceptible to adversarial attacks, which modify input of DNNs with unnoticeable but malicious perturbations. This article proposes a method to explore targeted and stealthy FDIAs via adversarial machine learning. We pose FDIAs as sparse optimization problems to achieve initial attack objectives and remain stealthy during attacks. We propose a parallel optimization algorithm to efficiently solve the problems and explore additional sparse-state attacks. The experimental results show that for IEEE 14-bus and 118-bus systems, the success rate of two-state sparse attacks with small-scale targets is as high as 80%. In addition, the attack success rate can continue to increase as the number of attack states increases. The proposed attacks demonstrate that attackers can implement attacks that can bypass both bad data detectors and neural network detectors while keeping the initial attack objectives unchanged, which is a critical and urgent security threat in CPS." @default.
- W4210400539 created "2022-02-08" @default.
- W4210400539 creator A5012677271 @default.
- W4210400539 creator A5019565715 @default.
- W4210400539 creator A5025328969 @default.
- W4210400539 creator A5042938268 @default.
- W4210400539 creator A5054882290 @default.
- W4210400539 creator A5083064267 @default.
- W4210400539 date "2022-08-01" @default.
- W4210400539 modified "2023-10-15" @default.
- W4210400539 title "Exploring Targeted and Stealthy False Data Injection Attacks via Adversarial Machine Learning" @default.
- W4210400539 cites W1598852905 @default.
- W4210400539 cites W1964676527 @default.
- W4210400539 cites W2038651258 @default.
- W4210400539 cites W2106424475 @default.
- W4210400539 cites W2180612164 @default.
- W4210400539 cites W2243397390 @default.
- W4210400539 cites W2332912277 @default.
- W4210400539 cites W2603766943 @default.
- W4210400539 cites W2918639172 @default.
- W4210400539 cites W2951316647 @default.
- W4210400539 cites W2953228531 @default.
- W4210400539 cites W2963857521 @default.
- W4210400539 cites W2964082701 @default.
- W4210400539 cites W2964219812 @default.
- W4210400539 cites W2964351981 @default.
- W4210400539 cites W2977854028 @default.
- W4210400539 cites W2981727857 @default.
- W4210400539 cites W2982115741 @default.
- W4210400539 cites W2984195658 @default.
- W4210400539 cites W2984841587 @default.
- W4210400539 cites W2990850284 @default.
- W4210400539 cites W2994618658 @default.
- W4210400539 cites W3003753545 @default.
- W4210400539 cites W3004095348 @default.
- W4210400539 cites W3013246316 @default.
- W4210400539 cites W3017674813 @default.
- W4210400539 cites W3020927716 @default.
- W4210400539 cites W3021254375 @default.
- W4210400539 cites W3022019846 @default.
- W4210400539 cites W3022437389 @default.
- W4210400539 cites W3025412407 @default.
- W4210400539 cites W3034079382 @default.
- W4210400539 cites W3043746430 @default.
- W4210400539 cites W3103557498 @default.
- W4210400539 cites W3109531627 @default.
- W4210400539 cites W3115392585 @default.
- W4210400539 cites W3116466274 @default.
- W4210400539 cites W3118019547 @default.
- W4210400539 cites W3126610359 @default.
- W4210400539 cites W3135537813 @default.
- W4210400539 cites W3165880105 @default.
- W4210400539 cites W3196302005 @default.
- W4210400539 cites W3215396741 @default.
- W4210400539 cites W4226237874 @default.
- W4210400539 doi "https://doi.org/10.1109/jiot.2022.3147040" @default.
- W4210400539 hasPublicationYear "2022" @default.
- W4210400539 type Work @default.
- W4210400539 citedByCount "3" @default.
- W4210400539 countsByYear W42104005392023 @default.
- W4210400539 crossrefType "journal-article" @default.
- W4210400539 hasAuthorship W4210400539A5012677271 @default.
- W4210400539 hasAuthorship W4210400539A5019565715 @default.
- W4210400539 hasAuthorship W4210400539A5025328969 @default.
- W4210400539 hasAuthorship W4210400539A5042938268 @default.
- W4210400539 hasAuthorship W4210400539A5054882290 @default.
- W4210400539 hasAuthorship W4210400539A5083064267 @default.
- W4210400539 hasConcept C10558101 @default.
- W4210400539 hasConcept C108583219 @default.
- W4210400539 hasConcept C11413529 @default.
- W4210400539 hasConcept C119599485 @default.
- W4210400539 hasConcept C119857082 @default.
- W4210400539 hasConcept C127413603 @default.
- W4210400539 hasConcept C154945302 @default.
- W4210400539 hasConcept C2778403875 @default.
- W4210400539 hasConcept C2984842247 @default.
- W4210400539 hasConcept C37736160 @default.
- W4210400539 hasConcept C38652104 @default.
- W4210400539 hasConcept C41008148 @default.
- W4210400539 hasConcept C48103436 @default.
- W4210400539 hasConcept C50644808 @default.
- W4210400539 hasConcept C65856478 @default.
- W4210400539 hasConceptScore W4210400539C10558101 @default.
- W4210400539 hasConceptScore W4210400539C108583219 @default.
- W4210400539 hasConceptScore W4210400539C11413529 @default.
- W4210400539 hasConceptScore W4210400539C119599485 @default.
- W4210400539 hasConceptScore W4210400539C119857082 @default.
- W4210400539 hasConceptScore W4210400539C127413603 @default.
- W4210400539 hasConceptScore W4210400539C154945302 @default.
- W4210400539 hasConceptScore W4210400539C2778403875 @default.
- W4210400539 hasConceptScore W4210400539C2984842247 @default.
- W4210400539 hasConceptScore W4210400539C37736160 @default.
- W4210400539 hasConceptScore W4210400539C38652104 @default.
- W4210400539 hasConceptScore W4210400539C41008148 @default.
- W4210400539 hasConceptScore W4210400539C48103436 @default.
- W4210400539 hasConceptScore W4210400539C50644808 @default.
- W4210400539 hasConceptScore W4210400539C65856478 @default.
- W4210400539 hasFunder F4320321001 @default.