Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210403381> ?p ?o ?g. }
- W4210403381 endingPage "25436" @default.
- W4210403381 startingPage "25427" @default.
- W4210403381 abstract "As one of the most important properties of road, the adaption to roads with different macro-textures may significantly affect the autonomous driving technologies since road texture directly affects the skidding resistance and tire noise. Therefore, it is of great significance to detect and analyze the road macro texture with respect to different pavement types and service conditions. Generally, transportation engineers may face problems such as small dataset size, unbalanced dataset, etc. To solve these problems, this study aims to recognize the pavement texture using the deep learning approaches. The pavement texture data was first visualized using image processing methods, and then augmented using the traditional methods as well as a deep learning approach, i.e. Generative Adversarial Network (GAN) model. The Random Forest (RF) algorithm and the DenseNet network were both employed, where the overall classification accuracy of the original dataset was 50% and 59%, respectively, and the accuracy of the data augmented by the traditional methods was 58% and 70%, respectively. Test results show that, after 250,000 generations of training, GAN model was able to generate new pavement texture images with high quality, and the classification accuracy on the test dataset using DenseNet improved to 82%. It was discovered that the deep learning methods had a better performance for pavement texture recognition than manual classification and traditional machine learning methods. Furthermore, it was also found that adding noise in the original datasets as an augmentation method had a negative impact on the classification accuracy." @default.
- W4210403381 created "2022-02-08" @default.
- W4210403381 creator A5000424609 @default.
- W4210403381 creator A5003740227 @default.
- W4210403381 creator A5008587673 @default.
- W4210403381 creator A5039475042 @default.
- W4210403381 creator A5045044576 @default.
- W4210403381 creator A5068938765 @default.
- W4210403381 creator A5072338957 @default.
- W4210403381 creator A5091374776 @default.
- W4210403381 date "2022-12-01" @default.
- W4210403381 modified "2023-09-26" @default.
- W4210403381 title "Data Augmentation and Intelligent Recognition in Pavement Texture Using a Deep Learning" @default.
- W4210403381 cites W1974123443 @default.
- W4210403381 cites W2005919100 @default.
- W4210403381 cites W2074426358 @default.
- W4210403381 cites W2077792449 @default.
- W4210403381 cites W2078451521 @default.
- W4210403381 cites W2144941888 @default.
- W4210403381 cites W2170952564 @default.
- W4210403381 cites W2183341477 @default.
- W4210403381 cites W2194775991 @default.
- W4210403381 cites W2513009420 @default.
- W4210403381 cites W2520959394 @default.
- W4210403381 cites W2593414223 @default.
- W4210403381 cites W2616704603 @default.
- W4210403381 cites W2748746495 @default.
- W4210403381 cites W2805012281 @default.
- W4210403381 cites W2884786778 @default.
- W4210403381 cites W2885643216 @default.
- W4210403381 cites W2911964244 @default.
- W4210403381 cites W2914829774 @default.
- W4210403381 cites W2945003931 @default.
- W4210403381 cites W2995426368 @default.
- W4210403381 cites W3010717703 @default.
- W4210403381 cites W3045931938 @default.
- W4210403381 cites W3112350297 @default.
- W4210403381 cites W3112899434 @default.
- W4210403381 cites W3122280285 @default.
- W4210403381 cites W3131918430 @default.
- W4210403381 cites W3157557309 @default.
- W4210403381 doi "https://doi.org/10.1109/tits.2022.3140586" @default.
- W4210403381 hasPublicationYear "2022" @default.
- W4210403381 type Work @default.
- W4210403381 citedByCount "4" @default.
- W4210403381 countsByYear W42104033812022 @default.
- W4210403381 countsByYear W42104033812023 @default.
- W4210403381 crossrefType "journal-article" @default.
- W4210403381 hasAuthorship W4210403381A5000424609 @default.
- W4210403381 hasAuthorship W4210403381A5003740227 @default.
- W4210403381 hasAuthorship W4210403381A5008587673 @default.
- W4210403381 hasAuthorship W4210403381A5039475042 @default.
- W4210403381 hasAuthorship W4210403381A5045044576 @default.
- W4210403381 hasAuthorship W4210403381A5068938765 @default.
- W4210403381 hasAuthorship W4210403381A5072338957 @default.
- W4210403381 hasAuthorship W4210403381A5091374776 @default.
- W4210403381 hasConcept C108583219 @default.
- W4210403381 hasConcept C115961682 @default.
- W4210403381 hasConcept C119857082 @default.
- W4210403381 hasConcept C153180895 @default.
- W4210403381 hasConcept C154945302 @default.
- W4210403381 hasConcept C166955791 @default.
- W4210403381 hasConcept C16910744 @default.
- W4210403381 hasConcept C169258074 @default.
- W4210403381 hasConcept C199360897 @default.
- W4210403381 hasConcept C2781195486 @default.
- W4210403381 hasConcept C41008148 @default.
- W4210403381 hasConcept C63099799 @default.
- W4210403381 hasConcept C9417928 @default.
- W4210403381 hasConcept C99498987 @default.
- W4210403381 hasConceptScore W4210403381C108583219 @default.
- W4210403381 hasConceptScore W4210403381C115961682 @default.
- W4210403381 hasConceptScore W4210403381C119857082 @default.
- W4210403381 hasConceptScore W4210403381C153180895 @default.
- W4210403381 hasConceptScore W4210403381C154945302 @default.
- W4210403381 hasConceptScore W4210403381C166955791 @default.
- W4210403381 hasConceptScore W4210403381C16910744 @default.
- W4210403381 hasConceptScore W4210403381C169258074 @default.
- W4210403381 hasConceptScore W4210403381C199360897 @default.
- W4210403381 hasConceptScore W4210403381C2781195486 @default.
- W4210403381 hasConceptScore W4210403381C41008148 @default.
- W4210403381 hasConceptScore W4210403381C63099799 @default.
- W4210403381 hasConceptScore W4210403381C9417928 @default.
- W4210403381 hasConceptScore W4210403381C99498987 @default.
- W4210403381 hasFunder F4320321913 @default.
- W4210403381 hasFunder F4320330912 @default.
- W4210403381 hasIssue "12" @default.
- W4210403381 hasLocation W42104033811 @default.
- W4210403381 hasOpenAccess W4210403381 @default.
- W4210403381 hasPrimaryLocation W42104033811 @default.
- W4210403381 hasRelatedWork W2240965754 @default.
- W4210403381 hasRelatedWork W2950495821 @default.
- W4210403381 hasRelatedWork W2968586400 @default.
- W4210403381 hasRelatedWork W3211546796 @default.
- W4210403381 hasRelatedWork W4223564025 @default.
- W4210403381 hasRelatedWork W4226246648 @default.
- W4210403381 hasRelatedWork W4281616679 @default.
- W4210403381 hasRelatedWork W4281986673 @default.