Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210432748> ?p ?o ?g. }
- W4210432748 endingPage "8024" @default.
- W4210432748 startingPage "8010" @default.
- W4210432748 abstract "Although proton exchange membrane fuel cells have received attention, the high costs associated with Pt-based catalysts in membrane electrode assemblies (MEAs) remain a huge obstacle for large-scale applications. To solve this urgent problem, the utilization efficiency of Pt in MEAs must be increased. Facing numerous interacting parameters in an attempt to keep experimental costs as low as possible, we innovatively introduce machine learning (ML) to achieve this goal. Nine different ML algorithms are trained on the experimental dataset from our laboratory to precisely predict the performance and Pt utilization (maximum R2 = 0.973/0.968). To determine the best synthesis conditions, black-box interpretation methods are applied to provide reliable insights from both qualitative and quantitative perspectives. The optimized choices of ionomer/catalyst ratio, water content, organic solvent, catalyst loading, stirring method, solid content, and ultrasonic spraying flow rate are properly made with few experimental attempts under ML results' guidance. Promising Pt utilization of 0.147 gPt kW-1 and a power density of 1.02 W cm-2 are achieved at 0.6 V in a single cell (H2/air) at an ultralow total loading of 0.15 mg Pt cm-2. Therefore, this work contributes to the economy of hydrogen energy by paving the way for MEA optimization with complex parameters by ML." @default.
- W4210432748 created "2022-02-08" @default.
- W4210432748 creator A5002719379 @default.
- W4210432748 creator A5005494911 @default.
- W4210432748 creator A5026023372 @default.
- W4210432748 creator A5026354352 @default.
- W4210432748 creator A5041021485 @default.
- W4210432748 creator A5047261565 @default.
- W4210432748 creator A5055152383 @default.
- W4210432748 creator A5058038850 @default.
- W4210432748 creator A5066179206 @default.
- W4210432748 creator A5071404237 @default.
- W4210432748 creator A5078806458 @default.
- W4210432748 creator A5079620701 @default.
- W4210432748 creator A5082664098 @default.
- W4210432748 date "2022-02-02" @default.
- W4210432748 modified "2023-10-03" @default.
- W4210432748 title "Effectively Increasing Pt Utilization Efficiency of the Membrane Electrode Assembly in Proton Exchange Membrane Fuel Cells through Multiparameter Optimization Guided by Machine Learning" @default.
- W4210432748 cites W1992394363 @default.
- W4210432748 cites W1995357331 @default.
- W4210432748 cites W2005620692 @default.
- W4210432748 cites W2014112103 @default.
- W4210432748 cites W2049168086 @default.
- W4210432748 cites W2067551278 @default.
- W4210432748 cites W2123109551 @default.
- W4210432748 cites W2139238537 @default.
- W4210432748 cites W2144722104 @default.
- W4210432748 cites W2554421598 @default.
- W4210432748 cites W2604338135 @default.
- W4210432748 cites W2735321583 @default.
- W4210432748 cites W2786693279 @default.
- W4210432748 cites W2795411894 @default.
- W4210432748 cites W2800220128 @default.
- W4210432748 cites W2805483123 @default.
- W4210432748 cites W2892180865 @default.
- W4210432748 cites W2914046644 @default.
- W4210432748 cites W2940157895 @default.
- W4210432748 cites W2950827576 @default.
- W4210432748 cites W2951453118 @default.
- W4210432748 cites W2961575260 @default.
- W4210432748 cites W2965879713 @default.
- W4210432748 cites W2968830447 @default.
- W4210432748 cites W2976427406 @default.
- W4210432748 cites W3011249019 @default.
- W4210432748 cites W3017104303 @default.
- W4210432748 cites W3026291510 @default.
- W4210432748 cites W3094948551 @default.
- W4210432748 cites W3100583432 @default.
- W4210432748 cites W3102476541 @default.
- W4210432748 cites W3118398482 @default.
- W4210432748 cites W3127818450 @default.
- W4210432748 cites W3164483271 @default.
- W4210432748 cites W3175075975 @default.
- W4210432748 cites W3184595924 @default.
- W4210432748 cites W4214480506 @default.
- W4210432748 cites W4376595687 @default.
- W4210432748 doi "https://doi.org/10.1021/acsami.1c23221" @default.
- W4210432748 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35107272" @default.
- W4210432748 hasPublicationYear "2022" @default.
- W4210432748 type Work @default.
- W4210432748 citedByCount "11" @default.
- W4210432748 countsByYear W42104327482022 @default.
- W4210432748 countsByYear W42104327482023 @default.
- W4210432748 crossrefType "journal-article" @default.
- W4210432748 hasAuthorship W4210432748A5002719379 @default.
- W4210432748 hasAuthorship W4210432748A5005494911 @default.
- W4210432748 hasAuthorship W4210432748A5026023372 @default.
- W4210432748 hasAuthorship W4210432748A5026354352 @default.
- W4210432748 hasAuthorship W4210432748A5041021485 @default.
- W4210432748 hasAuthorship W4210432748A5047261565 @default.
- W4210432748 hasAuthorship W4210432748A5055152383 @default.
- W4210432748 hasAuthorship W4210432748A5058038850 @default.
- W4210432748 hasAuthorship W4210432748A5066179206 @default.
- W4210432748 hasAuthorship W4210432748A5071404237 @default.
- W4210432748 hasAuthorship W4210432748A5078806458 @default.
- W4210432748 hasAuthorship W4210432748A5079620701 @default.
- W4210432748 hasAuthorship W4210432748A5082664098 @default.
- W4210432748 hasConcept C121332964 @default.
- W4210432748 hasConcept C127413603 @default.
- W4210432748 hasConcept C132319479 @default.
- W4210432748 hasConcept C147789679 @default.
- W4210432748 hasConcept C161790260 @default.
- W4210432748 hasConcept C163258240 @default.
- W4210432748 hasConcept C17525397 @default.
- W4210432748 hasConcept C178790620 @default.
- W4210432748 hasConcept C185592680 @default.
- W4210432748 hasConcept C192562407 @default.
- W4210432748 hasConcept C21880701 @default.
- W4210432748 hasConcept C21881925 @default.
- W4210432748 hasConcept C2780302529 @default.
- W4210432748 hasConcept C2780471494 @default.
- W4210432748 hasConcept C2987658370 @default.
- W4210432748 hasConcept C41625074 @default.
- W4210432748 hasConcept C42360764 @default.
- W4210432748 hasConcept C54355233 @default.
- W4210432748 hasConcept C68801617 @default.
- W4210432748 hasConcept C78519656 @default.
- W4210432748 hasConcept C86803240 @default.