Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210436764> ?p ?o ?g. }
- W4210436764 endingPage "17" @default.
- W4210436764 startingPage "17" @default.
- W4210436764 abstract "Quantum reservoir computing is a machine learning approach designed to exploit the dynamics of quantum systems with memory to process information. As an advantage, it presents the possibility to benefit from the quantum resources provided by the reservoir combined with a simple and fast training strategy. In this work, this technique is introduced with a quantum reservoir of spins and it is applied to find the ground state energy of an additional quantum system. The quantum reservoir computer is trained with a linear model to predict the lowest energy of a particle in the presence of different speckle disorder potentials. The performance of the task is analyzed with a focus on the observable quantities extracted from the reservoir and it is shown to be enhanced when two-qubit correlations are employed." @default.
- W4210436764 created "2022-02-08" @default.
- W4210436764 creator A5046854072 @default.
- W4210436764 date "2022-01-28" @default.
- W4210436764 modified "2023-10-14" @default.
- W4210436764 title "Quantum Reservoir Computing for Speckle Disorder Potentials" @default.
- W4210436764 cites W1976143157 @default.
- W4210436764 cites W1989276711 @default.
- W4210436764 cites W2008362044 @default.
- W4210436764 cites W2083357246 @default.
- W4210436764 cites W2118706537 @default.
- W4210436764 cites W2120475512 @default.
- W4210436764 cites W2141695420 @default.
- W4210436764 cites W2155224358 @default.
- W4210436764 cites W2166087775 @default.
- W4210436764 cites W2171865010 @default.
- W4210436764 cites W2264002775 @default.
- W4210436764 cites W2337082154 @default.
- W4210436764 cites W2414456771 @default.
- W4210436764 cites W2559394418 @default.
- W4210436764 cites W2593575282 @default.
- W4210436764 cites W2606470147 @default.
- W4210436764 cites W2782714865 @default.
- W4210436764 cites W2792315573 @default.
- W4210436764 cites W2792946961 @default.
- W4210436764 cites W2795407028 @default.
- W4210436764 cites W2806077230 @default.
- W4210436764 cites W2902080782 @default.
- W4210436764 cites W2923537029 @default.
- W4210436764 cites W2934958788 @default.
- W4210436764 cites W2942202612 @default.
- W4210436764 cites W2952203743 @default.
- W4210436764 cites W2954687894 @default.
- W4210436764 cites W2962511854 @default.
- W4210436764 cites W2969821211 @default.
- W4210436764 cites W2986967681 @default.
- W4210436764 cites W2998369019 @default.
- W4210436764 cites W3012588797 @default.
- W4210436764 cites W3012938368 @default.
- W4210436764 cites W3046475732 @default.
- W4210436764 cites W3083383871 @default.
- W4210436764 cites W3092490507 @default.
- W4210436764 cites W3093316390 @default.
- W4210436764 cites W3098326027 @default.
- W4210436764 cites W3099305384 @default.
- W4210436764 cites W3099657232 @default.
- W4210436764 cites W3100300618 @default.
- W4210436764 cites W3100368702 @default.
- W4210436764 cites W3100886856 @default.
- W4210436764 cites W3104154834 @default.
- W4210436764 cites W3104599990 @default.
- W4210436764 cites W3118928507 @default.
- W4210436764 cites W3132491925 @default.
- W4210436764 cites W3132743969 @default.
- W4210436764 cites W3133598469 @default.
- W4210436764 cites W3180004979 @default.
- W4210436764 cites W3198369370 @default.
- W4210436764 cites W3210331014 @default.
- W4210436764 doi "https://doi.org/10.3390/condmat7010017" @default.
- W4210436764 hasPublicationYear "2022" @default.
- W4210436764 type Work @default.
- W4210436764 citedByCount "3" @default.
- W4210436764 countsByYear W42104367642023 @default.
- W4210436764 crossrefType "journal-article" @default.
- W4210436764 hasAuthorship W4210436764A5046854072 @default.
- W4210436764 hasBestOaLocation W42104367641 @default.
- W4210436764 hasConcept C102290492 @default.
- W4210436764 hasConcept C11255438 @default.
- W4210436764 hasConcept C121332964 @default.
- W4210436764 hasConcept C135796866 @default.
- W4210436764 hasConcept C147168706 @default.
- W4210436764 hasConcept C15184713 @default.
- W4210436764 hasConcept C154945302 @default.
- W4210436764 hasConcept C165696696 @default.
- W4210436764 hasConcept C186468114 @default.
- W4210436764 hasConcept C190463098 @default.
- W4210436764 hasConcept C190474826 @default.
- W4210436764 hasConcept C203087015 @default.
- W4210436764 hasConcept C26873012 @default.
- W4210436764 hasConcept C2778870898 @default.
- W4210436764 hasConcept C2985428132 @default.
- W4210436764 hasConcept C32848918 @default.
- W4210436764 hasConcept C38652104 @default.
- W4210436764 hasConcept C41008148 @default.
- W4210436764 hasConcept C50644808 @default.
- W4210436764 hasConcept C58053490 @default.
- W4210436764 hasConcept C62520636 @default.
- W4210436764 hasConcept C84114770 @default.
- W4210436764 hasConceptScore W4210436764C102290492 @default.
- W4210436764 hasConceptScore W4210436764C11255438 @default.
- W4210436764 hasConceptScore W4210436764C121332964 @default.
- W4210436764 hasConceptScore W4210436764C135796866 @default.
- W4210436764 hasConceptScore W4210436764C147168706 @default.
- W4210436764 hasConceptScore W4210436764C15184713 @default.
- W4210436764 hasConceptScore W4210436764C154945302 @default.
- W4210436764 hasConceptScore W4210436764C165696696 @default.
- W4210436764 hasConceptScore W4210436764C186468114 @default.
- W4210436764 hasConceptScore W4210436764C190463098 @default.