Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210439042> ?p ?o ?g. }
- W4210439042 abstract "Abstract More than $270 billion is spent on combatting corrosion annually in the USA alone. As such, we present a machine-learning (ML) approach to down select corrosion-resistant alloys. Our focus is on a non-traditional class of alloys called multi-principal element alloys (MPEAs). Given the vast search space due to the variety of compositions and descriptors to be considered, and based upon existing corrosion data for MPEAs, we demonstrate descriptor optimization to predict corrosion resistance of any given MPEA. Our ML model with descriptor optimization predicts the corrosion resistance of a given MPEA in the presence of an aqueous environment by down selecting two environmental descriptors (pH of the medium and halide concentration), one chemical composition descriptor (atomic % of element with minimum reduction potential), and two atomic descriptors (difference in lattice constant ( $$Delta {{{mathrm{a}}}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>a</mml:mi> </mml:mrow> </mml:math> ) and average reduction potential). Our findings show that, while it is possible to down select corrosion-resistant MPEAs by using ML from a large search space, a larger dataset and higher quality data are needed to accurately predict the corrosion rate of MPEAs. This study shows both the promise and the perils of ML when applied to a complex chemical phenomenon like corrosion of alloys." @default.
- W4210439042 created "2022-02-08" @default.
- W4210439042 creator A5009818790 @default.
- W4210439042 creator A5034533424 @default.
- W4210439042 creator A5050827972 @default.
- W4210439042 creator A5050976865 @default.
- W4210439042 creator A5058318292 @default.
- W4210439042 creator A5072134023 @default.
- W4210439042 date "2022-01-31" @default.
- W4210439042 modified "2023-10-17" @default.
- W4210439042 title "Machine-learning-guided descriptor selection for predicting corrosion resistance in multi-principal element alloys" @default.
- W4210439042 cites W1678356000 @default.
- W4210439042 cites W1964522838 @default.
- W4210439042 cites W1969077187 @default.
- W4210439042 cites W1970065157 @default.
- W4210439042 cites W1980825840 @default.
- W4210439042 cites W1991046318 @default.
- W4210439042 cites W1992985800 @default.
- W4210439042 cites W1997056533 @default.
- W4210439042 cites W2007056718 @default.
- W4210439042 cites W2016048583 @default.
- W4210439042 cites W2020462182 @default.
- W4210439042 cites W2025643482 @default.
- W4210439042 cites W2031024494 @default.
- W4210439042 cites W2035961263 @default.
- W4210439042 cites W2039061417 @default.
- W4210439042 cites W2040408410 @default.
- W4210439042 cites W2043694077 @default.
- W4210439042 cites W2046112266 @default.
- W4210439042 cites W2051061890 @default.
- W4210439042 cites W2051875768 @default.
- W4210439042 cites W2058085399 @default.
- W4210439042 cites W2071212235 @default.
- W4210439042 cites W2089212231 @default.
- W4210439042 cites W2090323360 @default.
- W4210439042 cites W2090989574 @default.
- W4210439042 cites W2093595690 @default.
- W4210439042 cites W2122768755 @default.
- W4210439042 cites W2150202735 @default.
- W4210439042 cites W2151554678 @default.
- W4210439042 cites W2164524421 @default.
- W4210439042 cites W2186555952 @default.
- W4210439042 cites W2201563651 @default.
- W4210439042 cites W2329495109 @default.
- W4210439042 cites W2465981249 @default.
- W4210439042 cites W2534691303 @default.
- W4210439042 cites W2586548042 @default.
- W4210439042 cites W2728071361 @default.
- W4210439042 cites W2737892174 @default.
- W4210439042 cites W2748869433 @default.
- W4210439042 cites W2765704920 @default.
- W4210439042 cites W2794647462 @default.
- W4210439042 cites W2803814958 @default.
- W4210439042 cites W2883068064 @default.
- W4210439042 cites W2883126118 @default.
- W4210439042 cites W2884430236 @default.
- W4210439042 cites W2897622614 @default.
- W4210439042 cites W2950904464 @default.
- W4210439042 cites W2963606102 @default.
- W4210439042 cites W2974424282 @default.
- W4210439042 cites W2992115806 @default.
- W4210439042 cites W2998897244 @default.
- W4210439042 cites W3004732066 @default.
- W4210439042 cites W3012102810 @default.
- W4210439042 cites W3013162424 @default.
- W4210439042 cites W3027074515 @default.
- W4210439042 cites W3027506783 @default.
- W4210439042 cites W3028991364 @default.
- W4210439042 cites W3038129978 @default.
- W4210439042 cites W3040971268 @default.
- W4210439042 cites W310769362 @default.
- W4210439042 cites W3119867101 @default.
- W4210439042 cites W3122037689 @default.
- W4210439042 cites W3134320006 @default.
- W4210439042 cites W3144904155 @default.
- W4210439042 cites W3152453431 @default.
- W4210439042 cites W3193329485 @default.
- W4210439042 cites W936596769 @default.
- W4210439042 doi "https://doi.org/10.1038/s41529-021-00208-y" @default.
- W4210439042 hasPublicationYear "2022" @default.
- W4210439042 type Work @default.
- W4210439042 citedByCount "19" @default.
- W4210439042 countsByYear W42104390422022 @default.
- W4210439042 countsByYear W42104390422023 @default.
- W4210439042 crossrefType "journal-article" @default.
- W4210439042 hasAuthorship W4210439042A5009818790 @default.
- W4210439042 hasAuthorship W4210439042A5034533424 @default.
- W4210439042 hasAuthorship W4210439042A5050827972 @default.
- W4210439042 hasAuthorship W4210439042A5050976865 @default.
- W4210439042 hasAuthorship W4210439042A5058318292 @default.
- W4210439042 hasAuthorship W4210439042A5072134023 @default.
- W4210439042 hasBestOaLocation W42104390421 @default.
- W4210439042 hasConcept C11413529 @default.
- W4210439042 hasConcept C119857082 @default.
- W4210439042 hasConcept C154945302 @default.
- W4210439042 hasConcept C191897082 @default.
- W4210439042 hasConcept C192562407 @default.
- W4210439042 hasConcept C20625102 @default.
- W4210439042 hasConcept C27438332 @default.
- W4210439042 hasConcept C41008148 @default.