Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210447742> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4210447742 abstract "The photoplethysmography (PPG) signal has advantages in terms of accessibility and portability, which makes its usage in many applications such as user access control very attractive. In this paper, we propose a novel deep learning-based biometric identification framework (BIDNET), which uses photoplethysmography (PPG) and 3-axis acceleration signal data collected from wrist-worn sensors in an ambulatory environment. We developed a completely personalized data-driven method using eight layers of deep neural networks, which uses five convolutional neural network (CNN) layers and two bidirectional long short-term memory (Bi-LSTM) layers, followed by one dense output layer. It is used to model the time series inherent in the beating signal representing the heart activity. The proposed network structure was evaluated on the ISPC dataset, which was collected from 20 subjects (including the test set) participating in sports activities. The best performance achieved in terms of average accuracy, F1 score, recall, and precision are 0.98, 0.99, 1.00 and 0.99 respectively over 20 subjects for five-fold cross-validation. The proposed model outperforms the state-of-the-art methods for PPG-based biometric identification." @default.
- W4210447742 created "2022-02-08" @default.
- W4210447742 creator A5005774249 @default.
- W4210447742 creator A5020434567 @default.
- W4210447742 creator A5074696141 @default.
- W4210447742 date "2021-10-22" @default.
- W4210447742 modified "2023-09-30" @default.
- W4210447742 title "Deep Learning Framework for Biometric Identification from Wrist-Worn PPG With Acceleration Signals" @default.
- W4210447742 cites W1591605500 @default.
- W4210447742 cites W1849865010 @default.
- W4210447742 cites W1884796122 @default.
- W4210447742 cites W2005741801 @default.
- W4210447742 cites W2099236935 @default.
- W4210447742 cites W2107994016 @default.
- W4210447742 cites W2117987876 @default.
- W4210447742 cites W2119345305 @default.
- W4210447742 cites W2151341607 @default.
- W4210447742 cites W2163686179 @default.
- W4210447742 cites W2288945889 @default.
- W4210447742 cites W2294589404 @default.
- W4210447742 cites W2537126746 @default.
- W4210447742 cites W2592075940 @default.
- W4210447742 cites W2606856422 @default.
- W4210447742 cites W2687548481 @default.
- W4210447742 cites W2800533254 @default.
- W4210447742 cites W2802969504 @default.
- W4210447742 cites W2910830939 @default.
- W4210447742 doi "https://doi.org/10.1109/icsip52628.2021.9688605" @default.
- W4210447742 hasPublicationYear "2021" @default.
- W4210447742 type Work @default.
- W4210447742 citedByCount "2" @default.
- W4210447742 countsByYear W42104477422022 @default.
- W4210447742 countsByYear W42104477422023 @default.
- W4210447742 crossrefType "proceedings-article" @default.
- W4210447742 hasAuthorship W4210447742A5005774249 @default.
- W4210447742 hasAuthorship W4210447742A5020434567 @default.
- W4210447742 hasAuthorship W4210447742A5074696141 @default.
- W4210447742 hasConcept C106131492 @default.
- W4210447742 hasConcept C108583219 @default.
- W4210447742 hasConcept C116390426 @default.
- W4210447742 hasConcept C116834253 @default.
- W4210447742 hasConcept C117896860 @default.
- W4210447742 hasConcept C121332964 @default.
- W4210447742 hasConcept C153180895 @default.
- W4210447742 hasConcept C154945302 @default.
- W4210447742 hasConcept C184297639 @default.
- W4210447742 hasConcept C199360897 @default.
- W4210447742 hasConcept C2779843651 @default.
- W4210447742 hasConcept C28490314 @default.
- W4210447742 hasConcept C31972630 @default.
- W4210447742 hasConcept C41008148 @default.
- W4210447742 hasConcept C50644808 @default.
- W4210447742 hasConcept C59822182 @default.
- W4210447742 hasConcept C63000827 @default.
- W4210447742 hasConcept C74650414 @default.
- W4210447742 hasConcept C81363708 @default.
- W4210447742 hasConcept C86803240 @default.
- W4210447742 hasConceptScore W4210447742C106131492 @default.
- W4210447742 hasConceptScore W4210447742C108583219 @default.
- W4210447742 hasConceptScore W4210447742C116390426 @default.
- W4210447742 hasConceptScore W4210447742C116834253 @default.
- W4210447742 hasConceptScore W4210447742C117896860 @default.
- W4210447742 hasConceptScore W4210447742C121332964 @default.
- W4210447742 hasConceptScore W4210447742C153180895 @default.
- W4210447742 hasConceptScore W4210447742C154945302 @default.
- W4210447742 hasConceptScore W4210447742C184297639 @default.
- W4210447742 hasConceptScore W4210447742C199360897 @default.
- W4210447742 hasConceptScore W4210447742C2779843651 @default.
- W4210447742 hasConceptScore W4210447742C28490314 @default.
- W4210447742 hasConceptScore W4210447742C31972630 @default.
- W4210447742 hasConceptScore W4210447742C41008148 @default.
- W4210447742 hasConceptScore W4210447742C50644808 @default.
- W4210447742 hasConceptScore W4210447742C59822182 @default.
- W4210447742 hasConceptScore W4210447742C63000827 @default.
- W4210447742 hasConceptScore W4210447742C74650414 @default.
- W4210447742 hasConceptScore W4210447742C81363708 @default.
- W4210447742 hasConceptScore W4210447742C86803240 @default.
- W4210447742 hasFunder F4320330944 @default.
- W4210447742 hasLocation W42104477421 @default.
- W4210447742 hasOpenAccess W4210447742 @default.
- W4210447742 hasPrimaryLocation W42104477421 @default.
- W4210447742 hasRelatedWork W2731899572 @default.
- W4210447742 hasRelatedWork W2999805992 @default.
- W4210447742 hasRelatedWork W3011074480 @default.
- W4210447742 hasRelatedWork W3116150086 @default.
- W4210447742 hasRelatedWork W3133861977 @default.
- W4210447742 hasRelatedWork W3192840557 @default.
- W4210447742 hasRelatedWork W4200173597 @default.
- W4210447742 hasRelatedWork W4291897433 @default.
- W4210447742 hasRelatedWork W4312417841 @default.
- W4210447742 hasRelatedWork W4321369474 @default.
- W4210447742 isParatext "false" @default.
- W4210447742 isRetracted "false" @default.
- W4210447742 workType "article" @default.