Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210450354> ?p ?o ?g. }
- W4210450354 abstract "<sec> <title>BACKGROUND</title> Hand hygiene is a crucial and cost-effective method to prevent health care–associated infections, and in 2009, the World Health Organization (WHO) issued guidelines to encourage and standardize hand hygiene procedures. However, a common challenge in health care settings is low adherence, leading to low handwashing quality. Recent advances in machine learning and wearable sensing have made it possible to accurately measure handwashing quality for the purposes of training, feedback, or accreditation. </sec> <sec> <title>OBJECTIVE</title> We measured the accuracy of a sensor armband (Myo armband) in detecting the steps and duration of the WHO procedures for handwashing and handrubbing. </sec> <sec> <title>METHODS</title> We recruited 20 participants (10 females; mean age 26.5 years, SD 3.3). In a semistructured environment, we collected armband data (acceleration, gyroscope, orientation, and surface electromyography data) and video data from each participant during 15 handrub and 15 handwash sessions. We evaluated the detection accuracy for different armband placements, sensor configurations, user-dependent vs user-independent models, and the use of bootstrapping. </sec> <sec> <title>RESULTS</title> Using a single armband, the accuracy was 96% (SD 0.01) for the user-dependent model and 82% (SD 0.08) for the user-independent model. This increased when using two armbands to 97% (SD 0.01) and 91% (SD 0.04), respectively. Performance increased when the armband was placed on the forearm (user dependent: 97%, SD 0.01; and user independent: 91%, SD 0.04) and decreased when placed on the arm (user dependent: 96%, SD 0.01; and user independent: 80%, SD 0.06). In terms of bootstrapping, user-dependent models can achieve more than 80% accuracy after six training sessions and 90% with 16 sessions. Finally, we found that the combination of accelerometer and gyroscope minimizes power consumption and cost while maximizing performance. </sec> <sec> <title>CONCLUSIONS</title> A sensor armband can be used to measure hand hygiene quality relatively accurately, in terms of both handwashing and handrubbing. The performance is acceptable using a single armband worn in the upper arm but can substantially improve by placing the armband on the forearm or by using two armbands. </sec> <sec> <title>CLINICALTRIAL</title> <p /> </sec>" @default.
- W4210450354 created "2022-02-08" @default.
- W4210450354 creator A5015873569 @default.
- W4210450354 creator A5018329592 @default.
- W4210450354 creator A5019693610 @default.
- W4210450354 creator A5021628708 @default.
- W4210450354 creator A5023644163 @default.
- W4210450354 creator A5024805223 @default.
- W4210450354 date "2019-11-11" @default.
- W4210450354 modified "2023-09-27" @default.
- W4210450354 title "Accurate Measurement of Handwash Quality Using Sensor Armbands: Instrument Validation Study (Preprint)" @default.
- W4210450354 cites W1735236723 @default.
- W4210450354 cites W1823054078 @default.
- W4210450354 cites W1924381906 @default.
- W4210450354 cites W1964557864 @default.
- W4210450354 cites W1965145927 @default.
- W4210450354 cites W1976270560 @default.
- W4210450354 cites W1998048102 @default.
- W4210450354 cites W2017351764 @default.
- W4210450354 cites W2029634492 @default.
- W4210450354 cites W2080856466 @default.
- W4210450354 cites W2084399439 @default.
- W4210450354 cites W2086184552 @default.
- W4210450354 cites W2101754925 @default.
- W4210450354 cites W2103352018 @default.
- W4210450354 cites W2104227895 @default.
- W4210450354 cites W2113096211 @default.
- W4210450354 cites W2113701842 @default.
- W4210450354 cites W2115566146 @default.
- W4210450354 cites W2131986889 @default.
- W4210450354 cites W2133918285 @default.
- W4210450354 cites W2147263623 @default.
- W4210450354 cites W2149863288 @default.
- W4210450354 cites W2150427470 @default.
- W4210450354 cites W2150648788 @default.
- W4210450354 cites W2155800098 @default.
- W4210450354 cites W2159825671 @default.
- W4210450354 cites W2161906182 @default.
- W4210450354 cites W2187790984 @default.
- W4210450354 cites W2198216908 @default.
- W4210450354 cites W2273760049 @default.
- W4210450354 cites W2295680414 @default.
- W4210450354 cites W2330464377 @default.
- W4210450354 cites W2345685485 @default.
- W4210450354 cites W2383696055 @default.
- W4210450354 cites W2492386092 @default.
- W4210450354 cites W2549664586 @default.
- W4210450354 cites W2569901457 @default.
- W4210450354 cites W2607889085 @default.
- W4210450354 cites W2771247593 @default.
- W4210450354 cites W2794495458 @default.
- W4210450354 cites W2894568392 @default.
- W4210450354 cites W2899151654 @default.
- W4210450354 cites W2952856886 @default.
- W4210450354 cites W3102476541 @default.
- W4210450354 cites W4205175489 @default.
- W4210450354 cites W4239862684 @default.
- W4210450354 cites W2968772247 @default.
- W4210450354 doi "https://doi.org/10.2196/preprints.17001" @default.
- W4210450354 hasPublicationYear "2019" @default.
- W4210450354 type Work @default.
- W4210450354 citedByCount "0" @default.
- W4210450354 crossrefType "posted-content" @default.
- W4210450354 hasAuthorship W4210450354A5015873569 @default.
- W4210450354 hasAuthorship W4210450354A5018329592 @default.
- W4210450354 hasAuthorship W4210450354A5019693610 @default.
- W4210450354 hasAuthorship W4210450354A5021628708 @default.
- W4210450354 hasAuthorship W4210450354A5023644163 @default.
- W4210450354 hasAuthorship W4210450354A5024805223 @default.
- W4210450354 hasBestOaLocation W42104503542 @default.
- W4210450354 hasConcept C111472728 @default.
- W4210450354 hasConcept C138885662 @default.
- W4210450354 hasConcept C142724271 @default.
- W4210450354 hasConcept C149635348 @default.
- W4210450354 hasConcept C150594956 @default.
- W4210450354 hasConcept C160735492 @default.
- W4210450354 hasConcept C162324750 @default.
- W4210450354 hasConcept C1862650 @default.
- W4210450354 hasConcept C2779530757 @default.
- W4210450354 hasConcept C41008148 @default.
- W4210450354 hasConcept C50522688 @default.
- W4210450354 hasConcept C547646559 @default.
- W4210450354 hasConcept C71924100 @default.
- W4210450354 hasConceptScore W4210450354C111472728 @default.
- W4210450354 hasConceptScore W4210450354C138885662 @default.
- W4210450354 hasConceptScore W4210450354C142724271 @default.
- W4210450354 hasConceptScore W4210450354C149635348 @default.
- W4210450354 hasConceptScore W4210450354C150594956 @default.
- W4210450354 hasConceptScore W4210450354C160735492 @default.
- W4210450354 hasConceptScore W4210450354C162324750 @default.
- W4210450354 hasConceptScore W4210450354C1862650 @default.
- W4210450354 hasConceptScore W4210450354C2779530757 @default.
- W4210450354 hasConceptScore W4210450354C41008148 @default.
- W4210450354 hasConceptScore W4210450354C50522688 @default.
- W4210450354 hasConceptScore W4210450354C547646559 @default.
- W4210450354 hasConceptScore W4210450354C71924100 @default.
- W4210450354 hasLocation W42104503541 @default.
- W4210450354 hasLocation W42104503542 @default.
- W4210450354 hasOpenAccess W4210450354 @default.
- W4210450354 hasPrimaryLocation W42104503541 @default.