Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210450489> ?p ?o ?g. }
- W4210450489 endingPage "103754" @default.
- W4210450489 startingPage "103754" @default.
- W4210450489 abstract "The real-world urban systems represent nonlinear, dynamical, and interconnected urban processes that require better management of their complexity. Thereby, we need to understand, measure, and assess the structure and functioning of the urban processes. We propose an innovative and novel evidence-based methodology to manage the complexity of urban processes, that can enhance their resilience as part of the concept of smart and regenerative urban metabolism with the overarching intention to better achieve sustainability. We couple Life Cycle Thinking and Machine Learning to measure and assess the metabolic processes of the urban core of Lisbon's functional urban area using multidimensional indicators and measures incorporating urban ecosystem services dynamics. We built and trained a multilayer perceptron (MLP) network to identify the metabolic drivers and predict the metabolic changes for the near future (2025). The prediction model's performance was validated using the standard deviations of the prediction errors of the data subsets and the network's training graph. The simulated results show that the urban processes related to employment and unemployment rates (17%), energy systems (10%), sewage and waste management/treatment/recycling, demography & migration, hard/soft cultural assets, and air pollution (7%), education and training, welfare, cultural participation, and habitat-ecosystems (5%), urban safety, water systems, economy, housing quality, urban void, urban fabric, and health services and infrastructure (2%), consists the salient drivers for the urban metabolic changes. The proposed research framework acts as a knowledge-based tool to support effective urban metabolism policies ensuring sustainable and resilient urban development." @default.
- W4210450489 created "2022-02-08" @default.
- W4210450489 creator A5003943519 @default.
- W4210450489 creator A5020247383 @default.
- W4210450489 creator A5029207859 @default.
- W4210450489 date "2022-05-01" @default.
- W4210450489 modified "2023-10-18" @default.
- W4210450489 title "Life cycle thinking and machine learning for urban metabolism assessment and prediction" @default.
- W4210450489 cites W1569827227 @default.
- W4210450489 cites W1586335931 @default.
- W4210450489 cites W1975142928 @default.
- W4210450489 cites W1978467764 @default.
- W4210450489 cites W1998430272 @default.
- W4210450489 cites W2013441073 @default.
- W4210450489 cites W2051264249 @default.
- W4210450489 cites W2058068031 @default.
- W4210450489 cites W2061708029 @default.
- W4210450489 cites W2062546738 @default.
- W4210450489 cites W2084148393 @default.
- W4210450489 cites W2101927907 @default.
- W4210450489 cites W2111571228 @default.
- W4210450489 cites W2119018277 @default.
- W4210450489 cites W2129450549 @default.
- W4210450489 cites W2144499799 @default.
- W4210450489 cites W2164590758 @default.
- W4210450489 cites W2281852278 @default.
- W4210450489 cites W2508355007 @default.
- W4210450489 cites W2760270104 @default.
- W4210450489 cites W2792091148 @default.
- W4210450489 cites W2800250295 @default.
- W4210450489 cites W2804209811 @default.
- W4210450489 cites W2887815040 @default.
- W4210450489 cites W2894755253 @default.
- W4210450489 cites W2904698007 @default.
- W4210450489 cites W2939020670 @default.
- W4210450489 cites W2943966504 @default.
- W4210450489 cites W2944848997 @default.
- W4210450489 cites W2952601766 @default.
- W4210450489 cites W2965448642 @default.
- W4210450489 cites W2969817592 @default.
- W4210450489 cites W2975142010 @default.
- W4210450489 cites W2997938641 @default.
- W4210450489 cites W2998982098 @default.
- W4210450489 cites W2999936464 @default.
- W4210450489 cites W3040836354 @default.
- W4210450489 cites W3087280993 @default.
- W4210450489 cites W3118020968 @default.
- W4210450489 cites W4250430659 @default.
- W4210450489 doi "https://doi.org/10.1016/j.scs.2022.103754" @default.
- W4210450489 hasPublicationYear "2022" @default.
- W4210450489 type Work @default.
- W4210450489 citedByCount "11" @default.
- W4210450489 countsByYear W42104504892022 @default.
- W4210450489 countsByYear W42104504892023 @default.
- W4210450489 crossrefType "journal-article" @default.
- W4210450489 hasAuthorship W4210450489A5003943519 @default.
- W4210450489 hasAuthorship W4210450489A5020247383 @default.
- W4210450489 hasAuthorship W4210450489A5029207859 @default.
- W4210450489 hasBestOaLocation W42104504891 @default.
- W4210450489 hasConcept C107826830 @default.
- W4210450489 hasConcept C127413603 @default.
- W4210450489 hasConcept C134560507 @default.
- W4210450489 hasConcept C147176958 @default.
- W4210450489 hasConcept C162324750 @default.
- W4210450489 hasConcept C18903297 @default.
- W4210450489 hasConcept C202625521 @default.
- W4210450489 hasConcept C20664614 @default.
- W4210450489 hasConcept C39432304 @default.
- W4210450489 hasConcept C41008148 @default.
- W4210450489 hasConcept C4238864 @default.
- W4210450489 hasConcept C49545453 @default.
- W4210450489 hasConcept C552854447 @default.
- W4210450489 hasConcept C66204764 @default.
- W4210450489 hasConcept C86803240 @default.
- W4210450489 hasConceptScore W4210450489C107826830 @default.
- W4210450489 hasConceptScore W4210450489C127413603 @default.
- W4210450489 hasConceptScore W4210450489C134560507 @default.
- W4210450489 hasConceptScore W4210450489C147176958 @default.
- W4210450489 hasConceptScore W4210450489C162324750 @default.
- W4210450489 hasConceptScore W4210450489C18903297 @default.
- W4210450489 hasConceptScore W4210450489C202625521 @default.
- W4210450489 hasConceptScore W4210450489C20664614 @default.
- W4210450489 hasConceptScore W4210450489C39432304 @default.
- W4210450489 hasConceptScore W4210450489C41008148 @default.
- W4210450489 hasConceptScore W4210450489C4238864 @default.
- W4210450489 hasConceptScore W4210450489C49545453 @default.
- W4210450489 hasConceptScore W4210450489C552854447 @default.
- W4210450489 hasConceptScore W4210450489C66204764 @default.
- W4210450489 hasConceptScore W4210450489C86803240 @default.
- W4210450489 hasLocation W42104504891 @default.
- W4210450489 hasLocation W42104504892 @default.
- W4210450489 hasOpenAccess W4210450489 @default.
- W4210450489 hasPrimaryLocation W42104504891 @default.
- W4210450489 hasRelatedWork W2081173485 @default.
- W4210450489 hasRelatedWork W2353590208 @default.
- W4210450489 hasRelatedWork W2359982472 @default.
- W4210450489 hasRelatedWork W2360211906 @default.
- W4210450489 hasRelatedWork W2394191490 @default.