Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210457579> ?p ?o ?g. }
- W4210457579 endingPage "103484" @default.
- W4210457579 startingPage "103484" @default.
- W4210457579 abstract "Despite the myriad of stress related research studies, there has been very few studies which focused on the complexity of the ECG signal/data, prior to predicting stress. In order to counter the problem of “data complexity and overfitting”, we innovated ML (machine learning) approaches using transfer learning and autoencoder techniques, in order to predict stress/not stress (2 classes) with high precision from WESAD dataset. We then assessed the bias and variance associated with our algorithms through various statistical tests, in order to understand their ability to generalize well on newer data. Our proposed algorithms were able to achieve 98.99% (CNN) and 98.92% (VGG16) accuracy through 10-fold cross validation, while maintaining a very low bias, variance, akaike information criterion (AIC) of and Bayesian information criterion (BIC) scores, substantiating their ability to predict stress with very high accuracy without overfitting. Results illustrates their ability to generalize well on any stress related data, irrespective of their complexity. Our algorithms performed better than every other related studies. Although we were able to reduce the time and space complexity of the algorithms through transfer learning and autoencoder techniques, the algorithms still require more time and computational power than simpler algorithms, something which will require more attention for our future work." @default.
- W4210457579 created "2022-02-08" @default.
- W4210457579 creator A5069518008 @default.
- W4210457579 creator A5071085167 @default.
- W4210457579 creator A5091874142 @default.
- W4210457579 date "2022-04-01" @default.
- W4210457579 modified "2023-10-02" @default.
- W4210457579 title "Comprehending the impact of deep learning algorithms on optimizing for recurring impediments associated with stress prediction using ECG data through statistical analysis" @default.
- W4210457579 cites W1606671819 @default.
- W4210457579 cites W1992636780 @default.
- W4210457579 cites W2026891775 @default.
- W4210457579 cites W2053944331 @default.
- W4210457579 cites W2076127987 @default.
- W4210457579 cites W2088726129 @default.
- W4210457579 cites W2304598329 @default.
- W4210457579 cites W2342792901 @default.
- W4210457579 cites W2345653080 @default.
- W4210457579 cites W2487770199 @default.
- W4210457579 cites W2615517069 @default.
- W4210457579 cites W2744373723 @default.
- W4210457579 cites W2759190050 @default.
- W4210457579 cites W2766415135 @default.
- W4210457579 cites W2786146442 @default.
- W4210457579 cites W2857279780 @default.
- W4210457579 cites W2885562295 @default.
- W4210457579 cites W2894771803 @default.
- W4210457579 cites W2916182456 @default.
- W4210457579 cites W2945801048 @default.
- W4210457579 cites W2954948187 @default.
- W4210457579 cites W3010734943 @default.
- W4210457579 cites W3025161810 @default.
- W4210457579 cites W3037414627 @default.
- W4210457579 cites W3117629641 @default.
- W4210457579 cites W3135515316 @default.
- W4210457579 cites W3135891860 @default.
- W4210457579 cites W4292994367 @default.
- W4210457579 doi "https://doi.org/10.1016/j.bspc.2022.103484" @default.
- W4210457579 hasPublicationYear "2022" @default.
- W4210457579 type Work @default.
- W4210457579 citedByCount "3" @default.
- W4210457579 countsByYear W42104575792022 @default.
- W4210457579 countsByYear W42104575792023 @default.
- W4210457579 crossrefType "journal-article" @default.
- W4210457579 hasAuthorship W4210457579A5069518008 @default.
- W4210457579 hasAuthorship W4210457579A5071085167 @default.
- W4210457579 hasAuthorship W4210457579A5091874142 @default.
- W4210457579 hasConcept C101738243 @default.
- W4210457579 hasConcept C107673813 @default.
- W4210457579 hasConcept C108583219 @default.
- W4210457579 hasConcept C11413529 @default.
- W4210457579 hasConcept C119857082 @default.
- W4210457579 hasConcept C121955636 @default.
- W4210457579 hasConcept C126674687 @default.
- W4210457579 hasConcept C138885662 @default.
- W4210457579 hasConcept C144133560 @default.
- W4210457579 hasConcept C154945302 @default.
- W4210457579 hasConcept C168136583 @default.
- W4210457579 hasConcept C179799912 @default.
- W4210457579 hasConcept C196083921 @default.
- W4210457579 hasConcept C21036866 @default.
- W4210457579 hasConcept C22019652 @default.
- W4210457579 hasConcept C41008148 @default.
- W4210457579 hasConcept C41895202 @default.
- W4210457579 hasConcept C50644808 @default.
- W4210457579 hasConceptScore W4210457579C101738243 @default.
- W4210457579 hasConceptScore W4210457579C107673813 @default.
- W4210457579 hasConceptScore W4210457579C108583219 @default.
- W4210457579 hasConceptScore W4210457579C11413529 @default.
- W4210457579 hasConceptScore W4210457579C119857082 @default.
- W4210457579 hasConceptScore W4210457579C121955636 @default.
- W4210457579 hasConceptScore W4210457579C126674687 @default.
- W4210457579 hasConceptScore W4210457579C138885662 @default.
- W4210457579 hasConceptScore W4210457579C144133560 @default.
- W4210457579 hasConceptScore W4210457579C154945302 @default.
- W4210457579 hasConceptScore W4210457579C168136583 @default.
- W4210457579 hasConceptScore W4210457579C179799912 @default.
- W4210457579 hasConceptScore W4210457579C196083921 @default.
- W4210457579 hasConceptScore W4210457579C21036866 @default.
- W4210457579 hasConceptScore W4210457579C22019652 @default.
- W4210457579 hasConceptScore W4210457579C41008148 @default.
- W4210457579 hasConceptScore W4210457579C41895202 @default.
- W4210457579 hasConceptScore W4210457579C50644808 @default.
- W4210457579 hasLocation W42104575791 @default.
- W4210457579 hasOpenAccess W4210457579 @default.
- W4210457579 hasPrimaryLocation W42104575791 @default.
- W4210457579 hasRelatedWork W1593850014 @default.
- W4210457579 hasRelatedWork W1999903926 @default.
- W4210457579 hasRelatedWork W2110274812 @default.
- W4210457579 hasRelatedWork W2161476879 @default.
- W4210457579 hasRelatedWork W2233107830 @default.
- W4210457579 hasRelatedWork W2989932438 @default.
- W4210457579 hasRelatedWork W3111001581 @default.
- W4210457579 hasRelatedWork W3182438885 @default.
- W4210457579 hasRelatedWork W4210457579 @default.
- W4210457579 hasRelatedWork W4327576854 @default.
- W4210457579 hasVolume "74" @default.
- W4210457579 isParatext "false" @default.
- W4210457579 isRetracted "false" @default.