Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210458679> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4210458679 endingPage "100875" @default.
- W4210458679 startingPage "100875" @default.
- W4210458679 abstract "Changes in a patient's condition over time are a backbone of clinical decision making. However, most currently used methods for identification of patients in intensive care units (ICUs) at high risk for death do not make effective use of the temporal dimension of available data. We therefore conducted a study to determine whether longitudinal data analysis using recurrent neural networks (RNN) with attention mechanism can identify novel temporal data patterns predictive of adverse outcomes. We analyzed data on patients admitted to the Medical Intensive Care Unit (MICU) of Asan Medical Center between 2010 and 2017. Static (demographics, diagnoses, procedures, medications) and longitudinal (vitals, laboratory tests, Glasgow Coma Scale) variables were included in the analysis. We used an RNN model with long short-term memory (RNN-LSTM) with attention mechanism to identify and test novel data patterns predictive of ICU death. We also compared accuracy of prediction of ICU mortality between a logistic regression and RNN-LSTM models with and without attention. Among 4896 patients admitted to the MICU, 548 (11.19%) died. RNN-LSTM model with attention identified several high-risk longitudinal variable patterns that were predictive of ICU mortality in a confirmatory analysis, including sustained low blood oxygen content (OR 2.33; 95% CI 1.16 to 4.70) and high frequency of serum sodium measurements (OR 1.27; 95% CI 1.04 to 1.56). RNN-LSTM models with and without attention achieved numerically, but not statistically significantly higher c-statistics for prediction of ICU mortality compared to logistic regression. RNN-LSTM model with attention identified novel temporal data patterns predictive of ICU mortality. These predictors were both statistically significant and clinically plausible, likely representing progressive respiratory failure (sustained low oxygen saturation) and close monitoring of a clinically deteriorating patient (frequent sodium measurements)." @default.
- W4210458679 created "2022-02-08" @default.
- W4210458679 creator A5005196866 @default.
- W4210458679 creator A5011433279 @default.
- W4210458679 creator A5012996842 @default.
- W4210458679 creator A5014569894 @default.
- W4210458679 creator A5046176363 @default.
- W4210458679 creator A5074337796 @default.
- W4210458679 creator A5083393697 @default.
- W4210458679 date "2022-01-01" @default.
- W4210458679 modified "2023-10-18" @default.
- W4210458679 title "Using deep learning with attention mechanism for identification of novel temporal data patterns for prediction of ICU mortality" @default.
- W4210458679 cites W1972397607 @default.
- W4210458679 cites W2000566182 @default.
- W4210458679 cites W2020898422 @default.
- W4210458679 cites W2033925475 @default.
- W4210458679 cites W2063672892 @default.
- W4210458679 cites W2067747050 @default.
- W4210458679 cites W2070080552 @default.
- W4210458679 cites W2070268065 @default.
- W4210458679 cites W2110317531 @default.
- W4210458679 cites W2112831158 @default.
- W4210458679 cites W2114183015 @default.
- W4210458679 cites W2120340388 @default.
- W4210458679 cites W2135445066 @default.
- W4210458679 cites W2143715907 @default.
- W4210458679 cites W2150765167 @default.
- W4210458679 cites W2169685811 @default.
- W4210458679 cites W2328176404 @default.
- W4210458679 cites W2764165920 @default.
- W4210458679 cites W2916048747 @default.
- W4210458679 cites W2954230758 @default.
- W4210458679 cites W2979650406 @default.
- W4210458679 cites W2998715488 @default.
- W4210458679 cites W4247943214 @default.
- W4210458679 cites W4361865037 @default.
- W4210458679 doi "https://doi.org/10.1016/j.imu.2022.100875" @default.
- W4210458679 hasPublicationYear "2022" @default.
- W4210458679 type Work @default.
- W4210458679 citedByCount "1" @default.
- W4210458679 countsByYear W42104586792023 @default.
- W4210458679 crossrefType "journal-article" @default.
- W4210458679 hasAuthorship W4210458679A5005196866 @default.
- W4210458679 hasAuthorship W4210458679A5011433279 @default.
- W4210458679 hasAuthorship W4210458679A5012996842 @default.
- W4210458679 hasAuthorship W4210458679A5014569894 @default.
- W4210458679 hasAuthorship W4210458679A5046176363 @default.
- W4210458679 hasAuthorship W4210458679A5074337796 @default.
- W4210458679 hasAuthorship W4210458679A5083393697 @default.
- W4210458679 hasBestOaLocation W42104586791 @default.
- W4210458679 hasConcept C126322002 @default.
- W4210458679 hasConcept C141071460 @default.
- W4210458679 hasConcept C147168706 @default.
- W4210458679 hasConcept C151956035 @default.
- W4210458679 hasConcept C154945302 @default.
- W4210458679 hasConcept C17624336 @default.
- W4210458679 hasConcept C177713679 @default.
- W4210458679 hasConcept C194828623 @default.
- W4210458679 hasConcept C2776376669 @default.
- W4210458679 hasConcept C2987404301 @default.
- W4210458679 hasConcept C41008148 @default.
- W4210458679 hasConcept C50382708 @default.
- W4210458679 hasConcept C50644808 @default.
- W4210458679 hasConcept C71924100 @default.
- W4210458679 hasConceptScore W4210458679C126322002 @default.
- W4210458679 hasConceptScore W4210458679C141071460 @default.
- W4210458679 hasConceptScore W4210458679C147168706 @default.
- W4210458679 hasConceptScore W4210458679C151956035 @default.
- W4210458679 hasConceptScore W4210458679C154945302 @default.
- W4210458679 hasConceptScore W4210458679C17624336 @default.
- W4210458679 hasConceptScore W4210458679C177713679 @default.
- W4210458679 hasConceptScore W4210458679C194828623 @default.
- W4210458679 hasConceptScore W4210458679C2776376669 @default.
- W4210458679 hasConceptScore W4210458679C2987404301 @default.
- W4210458679 hasConceptScore W4210458679C41008148 @default.
- W4210458679 hasConceptScore W4210458679C50382708 @default.
- W4210458679 hasConceptScore W4210458679C50644808 @default.
- W4210458679 hasConceptScore W4210458679C71924100 @default.
- W4210458679 hasLocation W42104586791 @default.
- W4210458679 hasLocation W42104586792 @default.
- W4210458679 hasOpenAccess W4210458679 @default.
- W4210458679 hasPrimaryLocation W42104586791 @default.
- W4210458679 hasRelatedWork W1994625163 @default.
- W4210458679 hasRelatedWork W2000989443 @default.
- W4210458679 hasRelatedWork W2041768994 @default.
- W4210458679 hasRelatedWork W2080135567 @default.
- W4210458679 hasRelatedWork W2152951948 @default.
- W4210458679 hasRelatedWork W2766241952 @default.
- W4210458679 hasRelatedWork W2970450519 @default.
- W4210458679 hasRelatedWork W3195885893 @default.
- W4210458679 hasRelatedWork W3204711385 @default.
- W4210458679 hasRelatedWork W4365143256 @default.
- W4210458679 hasVolume "29" @default.
- W4210458679 isParatext "false" @default.
- W4210458679 isRetracted "false" @default.
- W4210458679 workType "article" @default.