Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210461825> ?p ?o ?g. }
- W4210461825 abstract "Abstract A two‐level clustering approach is proposed for optimal design/expansion of a ground‐based precipitation monitoring network (GPN). It harnesses the advantages of Infinite Bayesian fuzzy clustering in the first level to partition the study area into homogeneous precipitation zones by considering structural/statistical characteristics and temporal variability of the observed precipitation. In the second level, an ensemble of hierarchical and partitional clustering techniques is considered in the time domain to effectively partition each zone into groups by considering weighted inter‐site dissimilarities of precipitation. The dissimilarities account for correlation, temporal dynamics, and fuzzy mutual information of precipitation at existing stations and possible new gauge locations. Key station’s location in each group is identified by a proposed ranking procedure that accounts for population density, land‐use/landcover, and fuzzy marginal entropy of precipitation. For use with the approach, information on precipitation was derived for fine resolution ungauged grids covering the study area using random forest‐based regression relationships developed for gauged grids between merged multiple satellite‐based precipitation products (CHIRPS, IMERG) and ground‐based precipitation measurements. The potential of the proposed approach over other clustering‐based procedures is illustrated through a case study on a GPN comprising 1,128 gauges in Karnataka state (191,791 km 2 ) of India. Potential locations for installing new gauges and areas where there is scope for relocating existing stations are identified. The proposed methodology appears promising and could be extended to design networks monitoring various other hydrometeorological variables." @default.
- W4210461825 created "2022-02-08" @default.
- W4210461825 creator A5025677977 @default.
- W4210461825 creator A5041717741 @default.
- W4210461825 date "2022-02-01" @default.
- W4210461825 modified "2023-10-17" @default.
- W4210461825 title "A Bayesian Fuzzy Clustering Approach for Design of Precipitation Gauge Network Using Merged Remote Sensing and Ground‐Based Precipitation Products" @default.
- W4210461825 cites W129305155 @default.
- W4210461825 cites W1454619947 @default.
- W4210461825 cites W1520812622 @default.
- W4210461825 cites W1580513987 @default.
- W4210461825 cites W1965555277 @default.
- W4210461825 cites W1970185852 @default.
- W4210461825 cites W1970754582 @default.
- W4210461825 cites W1971492092 @default.
- W4210461825 cites W1976538447 @default.
- W4210461825 cites W1977305390 @default.
- W4210461825 cites W1989280111 @default.
- W4210461825 cites W1990364733 @default.
- W4210461825 cites W1993772683 @default.
- W4210461825 cites W1995875735 @default.
- W4210461825 cites W2008820148 @default.
- W4210461825 cites W2019398771 @default.
- W4210461825 cites W2024619338 @default.
- W4210461825 cites W2040208504 @default.
- W4210461825 cites W2045069625 @default.
- W4210461825 cites W2054042754 @default.
- W4210461825 cites W2057284977 @default.
- W4210461825 cites W2065527440 @default.
- W4210461825 cites W2084744129 @default.
- W4210461825 cites W2097747115 @default.
- W4210461825 cites W2102420637 @default.
- W4210461825 cites W2104322269 @default.
- W4210461825 cites W2118955746 @default.
- W4210461825 cites W2130860302 @default.
- W4210461825 cites W2138763184 @default.
- W4210461825 cites W2181460351 @default.
- W4210461825 cites W2192318283 @default.
- W4210461825 cites W2254066170 @default.
- W4210461825 cites W2261645655 @default.
- W4210461825 cites W2322187494 @default.
- W4210461825 cites W2412224527 @default.
- W4210461825 cites W2470898428 @default.
- W4210461825 cites W2480699663 @default.
- W4210461825 cites W2489691424 @default.
- W4210461825 cites W2497023285 @default.
- W4210461825 cites W2519547886 @default.
- W4210461825 cites W2522027325 @default.
- W4210461825 cites W2560566315 @default.
- W4210461825 cites W2751512204 @default.
- W4210461825 cites W2766575794 @default.
- W4210461825 cites W2770171409 @default.
- W4210461825 cites W2793997912 @default.
- W4210461825 cites W2890873664 @default.
- W4210461825 cites W2991566126 @default.
- W4210461825 cites W2996758938 @default.
- W4210461825 cites W2998319130 @default.
- W4210461825 cites W30004932 @default.
- W4210461825 cites W3003174637 @default.
- W4210461825 cites W3008241583 @default.
- W4210461825 cites W3009272346 @default.
- W4210461825 cites W3010788550 @default.
- W4210461825 cites W3119095696 @default.
- W4210461825 cites W3124860985 @default.
- W4210461825 cites W4242872793 @default.
- W4210461825 cites W974986761 @default.
- W4210461825 cites W37407049 @default.
- W4210461825 doi "https://doi.org/10.1029/2021wr030612" @default.
- W4210461825 hasPublicationYear "2022" @default.
- W4210461825 type Work @default.
- W4210461825 citedByCount "5" @default.
- W4210461825 countsByYear W42104618252022 @default.
- W4210461825 countsByYear W42104618252023 @default.
- W4210461825 crossrefType "journal-article" @default.
- W4210461825 hasAuthorship W4210461825A5025677977 @default.
- W4210461825 hasAuthorship W4210461825A5041717741 @default.
- W4210461825 hasConcept C100725284 @default.
- W4210461825 hasConcept C107054158 @default.
- W4210461825 hasConcept C114614502 @default.
- W4210461825 hasConcept C120961793 @default.
- W4210461825 hasConcept C124101348 @default.
- W4210461825 hasConcept C153294291 @default.
- W4210461825 hasConcept C154945302 @default.
- W4210461825 hasConcept C17212007 @default.
- W4210461825 hasConcept C205649164 @default.
- W4210461825 hasConcept C33923547 @default.
- W4210461825 hasConcept C39432304 @default.
- W4210461825 hasConcept C41008148 @default.
- W4210461825 hasConcept C42812 @default.
- W4210461825 hasConcept C58166 @default.
- W4210461825 hasConcept C73555534 @default.
- W4210461825 hasConceptScore W4210461825C100725284 @default.
- W4210461825 hasConceptScore W4210461825C107054158 @default.
- W4210461825 hasConceptScore W4210461825C114614502 @default.
- W4210461825 hasConceptScore W4210461825C120961793 @default.
- W4210461825 hasConceptScore W4210461825C124101348 @default.
- W4210461825 hasConceptScore W4210461825C153294291 @default.
- W4210461825 hasConceptScore W4210461825C154945302 @default.
- W4210461825 hasConceptScore W4210461825C17212007 @default.
- W4210461825 hasConceptScore W4210461825C205649164 @default.