Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210474211> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4210474211 endingPage "375" @default.
- W4210474211 startingPage "359" @default.
- W4210474211 abstract "In terms of overall winter cropping area and production in Bangladesh, cauliflower dominates a large share. It has many health benefits like decrease the risk of obesity, diabetes, and heart disease. It is a cultivated and winter crop which has huge demand in the country. But if proper care is not taken, many serious diseases will affect plants and will reduce productivity, quantity, and quality of cauliflower. Manual monitoring of plant disease is very difficult as it requires a tremendous amount of work and excessive time. Automatic recognition of disease through computer vision approach is becoming more popular day by day. So, in this paper, we introduced several techniques to recognize diseases that occur on plants in cauliflower. Our proposed solution would support the agriculture field of Bangladesh to grow cauliflower more effectively and will increase its production by taking the proper step after automated recognition of diseases. In our work, we have compared traditional machine learning and transfer learning. In machine learning, for image segmentation, k-means clustering is used after the image preprocessing method is applied, and then, ten relevant features are extracted. For classification, we compared various classification techniques. Random forest algorithm achieves overall 81.68% accuracy. Different CNN-based architectures with transfer learning, namely InceptionV3, MobileNetV2, ResNet50, and VGG16, are also applied. InceptionV3 achieves 90.08% accuracy which is the highest accuracy among these two approaches." @default.
- W4210474211 created "2022-02-08" @default.
- W4210474211 creator A5001755308 @default.
- W4210474211 creator A5026777401 @default.
- W4210474211 creator A5026977583 @default.
- W4210474211 creator A5039461026 @default.
- W4210474211 creator A5089462377 @default.
- W4210474211 creator A5090885879 @default.
- W4210474211 date "2021-09-04" @default.
- W4210474211 modified "2023-10-17" @default.
- W4210474211 title "Cauliflower Disease Recognition Using Machine Learning and Transfer Learning" @default.
- W4210474211 cites W2165698076 @default.
- W4210474211 cites W2807205902 @default.
- W4210474211 cites W2966533690 @default.
- W4210474211 cites W3021238715 @default.
- W4210474211 cites W3026623411 @default.
- W4210474211 cites W3026955027 @default.
- W4210474211 cites W3082876549 @default.
- W4210474211 cites W4250439889 @default.
- W4210474211 doi "https://doi.org/10.1007/978-981-16-2877-1_33" @default.
- W4210474211 hasPublicationYear "2021" @default.
- W4210474211 type Work @default.
- W4210474211 citedByCount "4" @default.
- W4210474211 countsByYear W42104742112021 @default.
- W4210474211 countsByYear W42104742112022 @default.
- W4210474211 countsByYear W42104742112023 @default.
- W4210474211 crossrefType "book-chapter" @default.
- W4210474211 hasAuthorship W4210474211A5001755308 @default.
- W4210474211 hasAuthorship W4210474211A5026777401 @default.
- W4210474211 hasAuthorship W4210474211A5026977583 @default.
- W4210474211 hasAuthorship W4210474211A5039461026 @default.
- W4210474211 hasAuthorship W4210474211A5089462377 @default.
- W4210474211 hasAuthorship W4210474211A5090885879 @default.
- W4210474211 hasConcept C119857082 @default.
- W4210474211 hasConcept C127413603 @default.
- W4210474211 hasConcept C150899416 @default.
- W4210474211 hasConcept C154945302 @default.
- W4210474211 hasConcept C169258074 @default.
- W4210474211 hasConcept C34736171 @default.
- W4210474211 hasConcept C41008148 @default.
- W4210474211 hasConcept C73555534 @default.
- W4210474211 hasConcept C88463610 @default.
- W4210474211 hasConcept C89600930 @default.
- W4210474211 hasConceptScore W4210474211C119857082 @default.
- W4210474211 hasConceptScore W4210474211C127413603 @default.
- W4210474211 hasConceptScore W4210474211C150899416 @default.
- W4210474211 hasConceptScore W4210474211C154945302 @default.
- W4210474211 hasConceptScore W4210474211C169258074 @default.
- W4210474211 hasConceptScore W4210474211C34736171 @default.
- W4210474211 hasConceptScore W4210474211C41008148 @default.
- W4210474211 hasConceptScore W4210474211C73555534 @default.
- W4210474211 hasConceptScore W4210474211C88463610 @default.
- W4210474211 hasConceptScore W4210474211C89600930 @default.
- W4210474211 hasLocation W42104742111 @default.
- W4210474211 hasOpenAccess W4210474211 @default.
- W4210474211 hasPrimaryLocation W42104742111 @default.
- W4210474211 hasRelatedWork W1546989560 @default.
- W4210474211 hasRelatedWork W1924178503 @default.
- W4210474211 hasRelatedWork W3033346322 @default.
- W4210474211 hasRelatedWork W3125561743 @default.
- W4210474211 hasRelatedWork W3135126032 @default.
- W4210474211 hasRelatedWork W3171520305 @default.
- W4210474211 hasRelatedWork W3193043704 @default.
- W4210474211 hasRelatedWork W4280648719 @default.
- W4210474211 hasRelatedWork W4308716060 @default.
- W4210474211 hasRelatedWork W4386259002 @default.
- W4210474211 isParatext "false" @default.
- W4210474211 isRetracted "false" @default.
- W4210474211 workType "book-chapter" @default.