Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210492004> ?p ?o ?g. }
- W4210492004 endingPage "101" @default.
- W4210492004 startingPage "93" @default.
- W4210492004 abstract "High-spatiotemporal-resolution land surface temperature (LST) images are essential in various fields of study. However, due to technical constraints, sensing systems have difficulty in providing LSTs with both high spatial and high temporal resolution. In this study, we propose a multi-scale spatiotemporal temperature-image fusion network (MSTTIFN) to generate high-spatial-resolution LST products. The MSTTIFN builds nonlinear mappings between the input Moderate Resolution Imaging Spectroradiometer ( MODIS ) LSTs and the out- put Landsat LSTs at the target date with two pairs of references and therefore enhances the resolution of time-series LSTs. We conduct experiments on the actual Landsat and MODIS data in two study areas (Beijing and Shandong) and compare our proposed MSTTIFN with four competing methods: the Spatial and Temporal Adaptive Reflectance Fusion Model, the Flexible Spatiotemporal Data Fusion Model, a two-stream convolutional neural network (StfNet), and a deep learning-based spatiotemporal temperature-fusion network. Results reveal that the MSTTIFN achieves the best and most stable performance." @default.
- W4210492004 created "2022-02-08" @default.
- W4210492004 creator A5060706069 @default.
- W4210492004 creator A5070234224 @default.
- W4210492004 creator A5070369693 @default.
- W4210492004 creator A5070629154 @default.
- W4210492004 date "2022-02-01" @default.
- W4210492004 modified "2023-10-17" @default.
- W4210492004 title "Spatiotemporal Temperature Fusion Based on a Deep Convolutional Network" @default.
- W4210492004 cites W1588434184 @default.
- W4210492004 cites W1598485241 @default.
- W4210492004 cites W1966928556 @default.
- W4210492004 cites W1970515153 @default.
- W4210492004 cites W1981939599 @default.
- W4210492004 cites W1982934085 @default.
- W4210492004 cites W1982956952 @default.
- W4210492004 cites W1986320227 @default.
- W4210492004 cites W1998349423 @default.
- W4210492004 cites W2040638734 @default.
- W4210492004 cites W2051798177 @default.
- W4210492004 cites W2055007440 @default.
- W4210492004 cites W2056811372 @default.
- W4210492004 cites W2067786729 @default.
- W4210492004 cites W2082263501 @default.
- W4210492004 cites W2088603520 @default.
- W4210492004 cites W2106307266 @default.
- W4210492004 cites W2119130463 @default.
- W4210492004 cites W2144059664 @default.
- W4210492004 cites W2157144502 @default.
- W4210492004 cites W2157245283 @default.
- W4210492004 cites W2161425513 @default.
- W4210492004 cites W2200350976 @default.
- W4210492004 cites W2398203768 @default.
- W4210492004 cites W2601482511 @default.
- W4210492004 cites W2755090963 @default.
- W4210492004 cites W2782535317 @default.
- W4210492004 cites W2793445582 @default.
- W4210492004 cites W2843468165 @default.
- W4210492004 cites W2887166489 @default.
- W4210492004 cites W2907470085 @default.
- W4210492004 cites W2915231377 @default.
- W4210492004 cites W2939570633 @default.
- W4210492004 cites W2963183385 @default.
- W4210492004 cites W2981854972 @default.
- W4210492004 cites W2992343265 @default.
- W4210492004 cites W3034422010 @default.
- W4210492004 cites W3097949321 @default.
- W4210492004 cites W2113876939 @default.
- W4210492004 doi "https://doi.org/10.14358/pers.21-00023r2" @default.
- W4210492004 hasPublicationYear "2022" @default.
- W4210492004 type Work @default.
- W4210492004 citedByCount "1" @default.
- W4210492004 countsByYear W42104920042023 @default.
- W4210492004 crossrefType "journal-article" @default.
- W4210492004 hasAuthorship W4210492004A5060706069 @default.
- W4210492004 hasAuthorship W4210492004A5070234224 @default.
- W4210492004 hasAuthorship W4210492004A5070369693 @default.
- W4210492004 hasAuthorship W4210492004A5070629154 @default.
- W4210492004 hasConcept C108583219 @default.
- W4210492004 hasConcept C108597893 @default.
- W4210492004 hasConcept C119666444 @default.
- W4210492004 hasConcept C120665830 @default.
- W4210492004 hasConcept C121332964 @default.
- W4210492004 hasConcept C127413603 @default.
- W4210492004 hasConcept C130066347 @default.
- W4210492004 hasConcept C138885662 @default.
- W4210492004 hasConcept C146978453 @default.
- W4210492004 hasConcept C154945302 @default.
- W4210492004 hasConcept C158525013 @default.
- W4210492004 hasConcept C166957645 @default.
- W4210492004 hasConcept C191935318 @default.
- W4210492004 hasConcept C19269812 @default.
- W4210492004 hasConcept C205372480 @default.
- W4210492004 hasConcept C205649164 @default.
- W4210492004 hasConcept C2777007095 @default.
- W4210492004 hasConcept C2778304055 @default.
- W4210492004 hasConcept C33954974 @default.
- W4210492004 hasConcept C41008148 @default.
- W4210492004 hasConcept C41895202 @default.
- W4210492004 hasConcept C62520636 @default.
- W4210492004 hasConcept C62649853 @default.
- W4210492004 hasConcept C81363708 @default.
- W4210492004 hasConceptScore W4210492004C108583219 @default.
- W4210492004 hasConceptScore W4210492004C108597893 @default.
- W4210492004 hasConceptScore W4210492004C119666444 @default.
- W4210492004 hasConceptScore W4210492004C120665830 @default.
- W4210492004 hasConceptScore W4210492004C121332964 @default.
- W4210492004 hasConceptScore W4210492004C127413603 @default.
- W4210492004 hasConceptScore W4210492004C130066347 @default.
- W4210492004 hasConceptScore W4210492004C138885662 @default.
- W4210492004 hasConceptScore W4210492004C146978453 @default.
- W4210492004 hasConceptScore W4210492004C154945302 @default.
- W4210492004 hasConceptScore W4210492004C158525013 @default.
- W4210492004 hasConceptScore W4210492004C166957645 @default.
- W4210492004 hasConceptScore W4210492004C191935318 @default.
- W4210492004 hasConceptScore W4210492004C19269812 @default.
- W4210492004 hasConceptScore W4210492004C205372480 @default.
- W4210492004 hasConceptScore W4210492004C205649164 @default.