Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210493537> ?p ?o ?g. }
- W4210493537 abstract "<sec> <title>BACKGROUND</title> Wearable and mobile devices that capture multimodal data have the potential to identify risk factors for high stress and poor mental health and to provide information to improve health and well-being. </sec> <sec> <title>OBJECTIVE</title> We developed new tools that provide objective physiological and behavioral measures using wearable sensors and mobile phones, together with methods that improve their data integrity. The aim of this study was to examine, using machine learning, how accurately these measures could identify conditions of self-reported high stress and poor mental health and which of the underlying modalities and measures were most accurate in identifying those conditions. </sec> <sec> <title>METHODS</title> We designed and conducted the 1-month SNAPSHOT study that investigated how daily behaviors and social networks influence self-reported stress, mood, and other health or well-being-related factors. We collected over 145,000 hours of data from 201 college students (age: 18-25 years, male:female=1.8:1) at one university, all recruited within self-identified social groups. Each student filled out standardized pre- and postquestionnaires on stress and mental health; during the month, each student completed twice-daily electronic diaries (e-diaries), wore two wrist-based sensors that recorded continuous physical activity and autonomic physiology, and installed an app on their mobile phone that recorded phone usage and geolocation patterns. We developed tools to make data collection more efficient, including data-check systems for sensor and mobile phone data and an e-diary administrative module for study investigators to locate possible errors in the e-diaries and communicate with participants to correct their entries promptly, which reduced the time taken to clean e-diary data by 69%. We constructed features and applied machine learning to the multimodal data to identify factors associated with self-reported poststudy stress and mental health, including behaviors that can be possibly modified by the individual to improve these measures. </sec> <sec> <title>RESULTS</title> We identified the physiological sensor, phone, mobility, and modifiable behavior features that were best predictors for stress and mental health classification. In general, wearable sensor features showed better classification performance than mobile phone or modifiable behavior features. Wearable sensor features, including skin conductance and temperature, reached 78.3% (148/189) accuracy for classifying students into high or low stress groups and 87% (41/47) accuracy for classifying high or low mental health groups. Modifiable behavior features, including number of naps, studying duration, calls, mobility patterns, and phone-screen-on time, reached 73.5% (139/189) accuracy for stress classification and 79% (37/47) accuracy for mental health classification. </sec> <sec> <title>CONCLUSIONS</title> New semiautomated tools improved the efficiency of long-term ambulatory data collection from wearable and mobile devices. Applying machine learning to the resulting data revealed a set of both objective features and modifiable behavioral features that could classify self-reported high or low stress and mental health groups in a college student population better than previous studies and showed new insights into digital phenotyping. </sec>" @default.
- W4210493537 created "2022-02-08" @default.
- W4210493537 creator A5015112468 @default.
- W4210493537 creator A5031090054 @default.
- W4210493537 creator A5061041118 @default.
- W4210493537 creator A5071361352 @default.
- W4210493537 creator A5082575900 @default.
- W4210493537 creator A5086778923 @default.
- W4210493537 creator A5087366916 @default.
- W4210493537 date "2017-11-13" @default.
- W4210493537 modified "2023-09-28" @default.
- W4210493537 title "Identifying Objective Physiological Markers and Modifiable Behaviors for Self-Reported Stress and Mental Health Status Using Wearable Sensors and Mobile Phones: Observational Study (Preprint)" @default.
- W4210493537 cites W1522850626 @default.
- W4210493537 cites W1906543112 @default.
- W4210493537 cites W1970583966 @default.
- W4210493537 cites W1985541164 @default.
- W4210493537 cites W1993026314 @default.
- W4210493537 cites W1995219774 @default.
- W4210493537 cites W2036886147 @default.
- W4210493537 cites W2049621968 @default.
- W4210493537 cites W2061884438 @default.
- W4210493537 cites W2065340646 @default.
- W4210493537 cites W2066806488 @default.
- W4210493537 cites W2068349382 @default.
- W4210493537 cites W2087592512 @default.
- W4210493537 cites W2098166026 @default.
- W4210493537 cites W2102413207 @default.
- W4210493537 cites W2103257619 @default.
- W4210493537 cites W2105036571 @default.
- W4210493537 cites W2111987689 @default.
- W4210493537 cites W2113555622 @default.
- W4210493537 cites W2127120252 @default.
- W4210493537 cites W2151471729 @default.
- W4210493537 cites W2290270843 @default.
- W4210493537 cites W2293081071 @default.
- W4210493537 cites W2294683276 @default.
- W4210493537 cites W2347128633 @default.
- W4210493537 cites W2523186567 @default.
- W4210493537 cites W2552919524 @default.
- W4210493537 cites W2575460524 @default.
- W4210493537 cites W2592965535 @default.
- W4210493537 cites W2596241616 @default.
- W4210493537 cites W2622433070 @default.
- W4210493537 doi "https://doi.org/10.2196/preprints.9410" @default.
- W4210493537 hasPublicationYear "2017" @default.
- W4210493537 type Work @default.
- W4210493537 citedByCount "0" @default.
- W4210493537 crossrefType "posted-content" @default.
- W4210493537 hasAuthorship W4210493537A5015112468 @default.
- W4210493537 hasAuthorship W4210493537A5031090054 @default.
- W4210493537 hasAuthorship W4210493537A5061041118 @default.
- W4210493537 hasAuthorship W4210493537A5071361352 @default.
- W4210493537 hasAuthorship W4210493537A5082575900 @default.
- W4210493537 hasAuthorship W4210493537A5086778923 @default.
- W4210493537 hasAuthorship W4210493537A5087366916 @default.
- W4210493537 hasBestOaLocation W42104935372 @default.
- W4210493537 hasConcept C105795698 @default.
- W4210493537 hasConcept C108827166 @default.
- W4210493537 hasConcept C118552586 @default.
- W4210493537 hasConcept C133462117 @default.
- W4210493537 hasConcept C134362201 @default.
- W4210493537 hasConcept C136764020 @default.
- W4210493537 hasConcept C138885662 @default.
- W4210493537 hasConcept C149635348 @default.
- W4210493537 hasConcept C150594956 @default.
- W4210493537 hasConcept C15744967 @default.
- W4210493537 hasConcept C27415008 @default.
- W4210493537 hasConcept C2777421447 @default.
- W4210493537 hasConcept C2778707766 @default.
- W4210493537 hasConcept C2779363104 @default.
- W4210493537 hasConcept C2780733359 @default.
- W4210493537 hasConcept C33923547 @default.
- W4210493537 hasConcept C41008148 @default.
- W4210493537 hasConcept C41895202 @default.
- W4210493537 hasConcept C43169469 @default.
- W4210493537 hasConcept C70410870 @default.
- W4210493537 hasConcept C71924100 @default.
- W4210493537 hasConcept C75630572 @default.
- W4210493537 hasConcept C76155785 @default.
- W4210493537 hasConceptScore W4210493537C105795698 @default.
- W4210493537 hasConceptScore W4210493537C108827166 @default.
- W4210493537 hasConceptScore W4210493537C118552586 @default.
- W4210493537 hasConceptScore W4210493537C133462117 @default.
- W4210493537 hasConceptScore W4210493537C134362201 @default.
- W4210493537 hasConceptScore W4210493537C136764020 @default.
- W4210493537 hasConceptScore W4210493537C138885662 @default.
- W4210493537 hasConceptScore W4210493537C149635348 @default.
- W4210493537 hasConceptScore W4210493537C150594956 @default.
- W4210493537 hasConceptScore W4210493537C15744967 @default.
- W4210493537 hasConceptScore W4210493537C27415008 @default.
- W4210493537 hasConceptScore W4210493537C2777421447 @default.
- W4210493537 hasConceptScore W4210493537C2778707766 @default.
- W4210493537 hasConceptScore W4210493537C2779363104 @default.
- W4210493537 hasConceptScore W4210493537C2780733359 @default.
- W4210493537 hasConceptScore W4210493537C33923547 @default.
- W4210493537 hasConceptScore W4210493537C41008148 @default.
- W4210493537 hasConceptScore W4210493537C41895202 @default.
- W4210493537 hasConceptScore W4210493537C43169469 @default.
- W4210493537 hasConceptScore W4210493537C70410870 @default.
- W4210493537 hasConceptScore W4210493537C71924100 @default.