Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210499471> ?p ?o ?g. }
- W4210499471 endingPage "123422" @default.
- W4210499471 startingPage "123422" @default.
- W4210499471 abstract "• The kinematic viscosity of the fuel oil was firstly estimated by using Machine Learning Methods. • Estimation was performed by using physical properties of the fuel oil as input data. • Estimated results obtained by machine learning methods was found compatible in terms of MRE. It is known that one of the important parameters affecting the emission and performance values of the liquid fuels used in thermal machines is the viscosity value. Therefore, many different studies have been carried out on the determination of dynamic and kinematic viscosities of liquid fuels. In this study, the kinematic viscosity value of Fuel Oil 4 at a constant temperature of 100 °C was estimated using machine learning methods. Extreme Learning Machine (ELM), Multi-Layer Perceptron (MLP), and K Nearest Neighbor (K-nn) methods were used to perform kinematic viscosity estimations. Two different distance metrics are considered in the K-nn algorithm. The experimentally obtained water content, density and flash point properties of the fuel were used as input data for machine learning approaches. Thus, four different models were developed for the kinematic viscosity estimation of Fuel oil fuel. The success rates of the predictions were compared using the Mean Relative Error (MRE) and Mean Squared Error (MSE). As a result, it was seen that all of the methods discussed provide predictive ability in accordance with standard values and the best prediction data is provided by using ELM." @default.
- W4210499471 created "2022-02-08" @default.
- W4210499471 creator A5007606002 @default.
- W4210499471 creator A5051944028 @default.
- W4210499471 creator A5071022890 @default.
- W4210499471 creator A5089708103 @default.
- W4210499471 date "2022-05-01" @default.
- W4210499471 modified "2023-10-03" @default.
- W4210499471 title "Kinematic viscosity estimation of fuel oil with comparison of machine learning methods" @default.
- W4210499471 cites W1975375654 @default.
- W4210499471 cites W1977415711 @default.
- W4210499471 cites W1984227493 @default.
- W4210499471 cites W1986794594 @default.
- W4210499471 cites W1997901658 @default.
- W4210499471 cites W2000207026 @default.
- W4210499471 cites W2005370521 @default.
- W4210499471 cites W2008566723 @default.
- W4210499471 cites W2015160447 @default.
- W4210499471 cites W2024509774 @default.
- W4210499471 cites W2025040771 @default.
- W4210499471 cites W2026131661 @default.
- W4210499471 cites W2047798000 @default.
- W4210499471 cites W2054618742 @default.
- W4210499471 cites W2071475089 @default.
- W4210499471 cites W2077487873 @default.
- W4210499471 cites W2078889949 @default.
- W4210499471 cites W2080560383 @default.
- W4210499471 cites W2111072639 @default.
- W4210499471 cites W2159194726 @default.
- W4210499471 cites W2182246850 @default.
- W4210499471 cites W2321180844 @default.
- W4210499471 cites W2321843750 @default.
- W4210499471 cites W2770238458 @default.
- W4210499471 cites W2883396117 @default.
- W4210499471 cites W2937613756 @default.
- W4210499471 cites W3005246648 @default.
- W4210499471 cites W3008902784 @default.
- W4210499471 cites W3011808341 @default.
- W4210499471 cites W3015933478 @default.
- W4210499471 cites W3035005924 @default.
- W4210499471 cites W3043037490 @default.
- W4210499471 cites W3116665599 @default.
- W4210499471 cites W3119162353 @default.
- W4210499471 cites W3143613121 @default.
- W4210499471 cites W3148311370 @default.
- W4210499471 cites W3164676097 @default.
- W4210499471 cites W3166467183 @default.
- W4210499471 cites W3180066418 @default.
- W4210499471 cites W3204963736 @default.
- W4210499471 cites W3206554535 @default.
- W4210499471 cites W983267810 @default.
- W4210499471 cites W2052864692 @default.
- W4210499471 doi "https://doi.org/10.1016/j.fuel.2022.123422" @default.
- W4210499471 hasPublicationYear "2022" @default.
- W4210499471 type Work @default.
- W4210499471 citedByCount "14" @default.
- W4210499471 countsByYear W42104994712022 @default.
- W4210499471 countsByYear W42104994712023 @default.
- W4210499471 crossrefType "journal-article" @default.
- W4210499471 hasAuthorship W4210499471A5007606002 @default.
- W4210499471 hasAuthorship W4210499471A5051944028 @default.
- W4210499471 hasAuthorship W4210499471A5071022890 @default.
- W4210499471 hasAuthorship W4210499471A5089708103 @default.
- W4210499471 hasConcept C119857082 @default.
- W4210499471 hasConcept C121332964 @default.
- W4210499471 hasConcept C127172972 @default.
- W4210499471 hasConcept C154945302 @default.
- W4210499471 hasConcept C159985019 @default.
- W4210499471 hasConcept C162015975 @default.
- W4210499471 hasConcept C179717631 @default.
- W4210499471 hasConcept C192562407 @default.
- W4210499471 hasConcept C2780150128 @default.
- W4210499471 hasConcept C33923547 @default.
- W4210499471 hasConcept C39920418 @default.
- W4210499471 hasConcept C41008148 @default.
- W4210499471 hasConcept C50644808 @default.
- W4210499471 hasConcept C60908668 @default.
- W4210499471 hasConcept C74650414 @default.
- W4210499471 hasConcept C97355855 @default.
- W4210499471 hasConceptScore W4210499471C119857082 @default.
- W4210499471 hasConceptScore W4210499471C121332964 @default.
- W4210499471 hasConceptScore W4210499471C127172972 @default.
- W4210499471 hasConceptScore W4210499471C154945302 @default.
- W4210499471 hasConceptScore W4210499471C159985019 @default.
- W4210499471 hasConceptScore W4210499471C162015975 @default.
- W4210499471 hasConceptScore W4210499471C179717631 @default.
- W4210499471 hasConceptScore W4210499471C192562407 @default.
- W4210499471 hasConceptScore W4210499471C2780150128 @default.
- W4210499471 hasConceptScore W4210499471C33923547 @default.
- W4210499471 hasConceptScore W4210499471C39920418 @default.
- W4210499471 hasConceptScore W4210499471C41008148 @default.
- W4210499471 hasConceptScore W4210499471C50644808 @default.
- W4210499471 hasConceptScore W4210499471C60908668 @default.
- W4210499471 hasConceptScore W4210499471C74650414 @default.
- W4210499471 hasConceptScore W4210499471C97355855 @default.
- W4210499471 hasLocation W42104994711 @default.
- W4210499471 hasOpenAccess W4210499471 @default.
- W4210499471 hasPrimaryLocation W42104994711 @default.