Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210501250> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4210501250 abstract "Crash severity prediction models enable various agencies to predict the severity of a crash to gain insights into the factors that affect or are associated with crash severity. One of the potential ways to predict the crash severity is to leverage machine learning (ML) algorithms. With the help of accident data, ML algorithms find hidden patterns to predict whether the severity of the crash is fatal, serious, or slight. In this research, we develop a prediction framework and implemented six different machine learning algorithms, namely: Naïve Bayes, Logistic Regression, Decision Tree, Random Forest, Bagging, and AdaBoost to predict the severity of the crash. Experimental results procured for the crash dataset published by the UK shows that Random Forest, Decision Tree, and Bagging significantly outperformed other algorithms in terms of all performance metrics. Furthermore, we analyze the huge; traffic data and extract insightful crash patterns to figure out the significant factors that have a clear effect on road accidents and provide beneficial suggestions regarding this issue. We strongly believe that the proposed prediction framework and the extracted pattern analysis would be helpful in improving the traffic safety system and assist the road authorities to establish proactive strategies to prevent traffic accidents." @default.
- W4210501250 created "2022-02-08" @default.
- W4210501250 creator A5033886992 @default.
- W4210501250 creator A5051935448 @default.
- W4210501250 creator A5068350993 @default.
- W4210501250 creator A5072593082 @default.
- W4210501250 date "2021-12-12" @default.
- W4210501250 modified "2023-09-23" @default.
- W4210501250 title "Road Accident Severity Prediction — A Comparative Analysis of Machine Learning Algorithms" @default.
- W4210501250 cites W2342723138 @default.
- W4210501250 cites W2587983529 @default.
- W4210501250 cites W2750591756 @default.
- W4210501250 cites W2787703779 @default.
- W4210501250 cites W2795276038 @default.
- W4210501250 cites W2893845879 @default.
- W4210501250 cites W2945388018 @default.
- W4210501250 cites W2964610359 @default.
- W4210501250 cites W3024400626 @default.
- W4210501250 cites W3037032698 @default.
- W4210501250 cites W3080869053 @default.
- W4210501250 cites W3116135537 @default.
- W4210501250 cites W3129598657 @default.
- W4210501250 cites W3165069287 @default.
- W4210501250 doi "https://doi.org/10.1109/gcaiot53516.2021.9693055" @default.
- W4210501250 hasPublicationYear "2021" @default.
- W4210501250 type Work @default.
- W4210501250 citedByCount "3" @default.
- W4210501250 countsByYear W42105012502022 @default.
- W4210501250 countsByYear W42105012502023 @default.
- W4210501250 crossrefType "proceedings-article" @default.
- W4210501250 hasAuthorship W4210501250A5033886992 @default.
- W4210501250 hasAuthorship W4210501250A5051935448 @default.
- W4210501250 hasAuthorship W4210501250A5068350993 @default.
- W4210501250 hasAuthorship W4210501250A5072593082 @default.
- W4210501250 hasConcept C110083411 @default.
- W4210501250 hasConcept C11413529 @default.
- W4210501250 hasConcept C119857082 @default.
- W4210501250 hasConcept C12267149 @default.
- W4210501250 hasConcept C141404830 @default.
- W4210501250 hasConcept C151956035 @default.
- W4210501250 hasConcept C153083717 @default.
- W4210501250 hasConcept C154945302 @default.
- W4210501250 hasConcept C169258074 @default.
- W4210501250 hasConcept C183469790 @default.
- W4210501250 hasConcept C199360897 @default.
- W4210501250 hasConcept C41008148 @default.
- W4210501250 hasConcept C45804977 @default.
- W4210501250 hasConcept C52001869 @default.
- W4210501250 hasConcept C5481197 @default.
- W4210501250 hasConcept C84525736 @default.
- W4210501250 hasConceptScore W4210501250C110083411 @default.
- W4210501250 hasConceptScore W4210501250C11413529 @default.
- W4210501250 hasConceptScore W4210501250C119857082 @default.
- W4210501250 hasConceptScore W4210501250C12267149 @default.
- W4210501250 hasConceptScore W4210501250C141404830 @default.
- W4210501250 hasConceptScore W4210501250C151956035 @default.
- W4210501250 hasConceptScore W4210501250C153083717 @default.
- W4210501250 hasConceptScore W4210501250C154945302 @default.
- W4210501250 hasConceptScore W4210501250C169258074 @default.
- W4210501250 hasConceptScore W4210501250C183469790 @default.
- W4210501250 hasConceptScore W4210501250C199360897 @default.
- W4210501250 hasConceptScore W4210501250C41008148 @default.
- W4210501250 hasConceptScore W4210501250C45804977 @default.
- W4210501250 hasConceptScore W4210501250C52001869 @default.
- W4210501250 hasConceptScore W4210501250C5481197 @default.
- W4210501250 hasConceptScore W4210501250C84525736 @default.
- W4210501250 hasFunder F4320323593 @default.
- W4210501250 hasLocation W42105012501 @default.
- W4210501250 hasOpenAccess W4210501250 @default.
- W4210501250 hasPrimaryLocation W42105012501 @default.
- W4210501250 hasRelatedWork W3112921962 @default.
- W4210501250 hasRelatedWork W3170784702 @default.
- W4210501250 hasRelatedWork W3204641204 @default.
- W4210501250 hasRelatedWork W3210877509 @default.
- W4210501250 hasRelatedWork W4200057378 @default.
- W4210501250 hasRelatedWork W4210501250 @default.
- W4210501250 hasRelatedWork W4283016678 @default.
- W4210501250 hasRelatedWork W4293069612 @default.
- W4210501250 hasRelatedWork W4294976306 @default.
- W4210501250 hasRelatedWork W4364857653 @default.
- W4210501250 isParatext "false" @default.
- W4210501250 isRetracted "false" @default.
- W4210501250 workType "article" @default.