Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210510546> ?p ?o ?g. }
- W4210510546 endingPage "77.e30" @default.
- W4210510546 startingPage "77.e1" @default.
- W4210510546 abstract "Preeclampsia presents a highly prevalent burden on pregnant women with an estimated incidence of 2% to 5%. Preeclampsia increases the maternal risk of death 20-fold and is one of the main causes of perinatal morbidity and mortality. Novel biomarkers, such as soluble fms-like tyrosine kinase-1 and placental growth factor in addition to a wide span of conventional clinical data (medical history, physical symptoms, laboratory parameters, etc.), present an excellent basis for the application of early-detection machine-learning models.This study aimed to develop, train, and test an automated machine-learning model for the prediction of adverse outcomes in patients with suspected preeclampsia.Our real-world dataset of 1647 (2472 samples) women was retrospectively recruited from women who presented to the Department of Obstetrics at the Charité - Universitätsmedizin Berlin, Berlin, Germany, between July 2010 and March 2019. After standardization and data cleaning, we calculated additional features regarding the biomarkers soluble fms-like tyrosine kinase-1 and placental growth factor and sonography data (umbilical artery pulsatility index, middle cerebral artery pulsatility index, mean uterine artery pulsatility index), resulting in a total of 114 features. The target metric was the occurrence of adverse outcomes throughout the remaining pregnancy and 2 weeks after delivery. We trained 2 different models, a gradient-boosted tree and a random forest classifier. Hyperparameter training was performed using a grid search approach. All results were evaluated via a 10 × 10-fold cross-validation regimen.We obtained metrics for the 2 naive machine-learning models. A gradient-boosted tree model was performed with a positive predictive value of 88%±6%, a negative predictive value of 89%±3%, a sensitivity of 66%±5%, a specificity of 97%±2%, an overall accuracy of 89%±3%, an area under the receiver operating characteristic curve of 0.82±0.03, an F1 score of 0.76±0.04, and a threat score of 0.61±0.05. The random forest classifier returned an equal positive predictive value (88%±6%) and specificity (97%±1%) while performing slightly inferior on the other available metrics. Applying differential cutoffs instead of a naive cutoff for positive prediction at ≥0.5 for the classifier's results yielded additional increases in performance.Machine-learning techniques were a valid approach to improve the prediction of adverse outcomes in pregnant women at high risk of preeclampsia vs current clinical standard techniques. Furthermore, we presented an automated system that did not rely on manual tuning or adjustments." @default.
- W4210510546 created "2022-02-08" @default.
- W4210510546 creator A5002313261 @default.
- W4210510546 creator A5019167714 @default.
- W4210510546 creator A5042919542 @default.
- W4210510546 creator A5051045029 @default.
- W4210510546 creator A5057771485 @default.
- W4210510546 creator A5067773794 @default.
- W4210510546 creator A5073371382 @default.
- W4210510546 creator A5079896317 @default.
- W4210510546 date "2022-07-01" @default.
- W4210510546 modified "2023-10-18" @default.
- W4210510546 title "A machine-learning–based algorithm improves prediction of preeclampsia-associated adverse outcomes" @default.
- W4210510546 cites W1631913055 @default.
- W4210510546 cites W1975755498 @default.
- W4210510546 cites W1994608352 @default.
- W4210510546 cites W2014821034 @default.
- W4210510546 cites W2021964897 @default.
- W4210510546 cites W2022620832 @default.
- W4210510546 cites W2061506872 @default.
- W4210510546 cites W2065594976 @default.
- W4210510546 cites W2074978990 @default.
- W4210510546 cites W2077002404 @default.
- W4210510546 cites W2081876722 @default.
- W4210510546 cites W2085417875 @default.
- W4210510546 cites W2094395765 @default.
- W4210510546 cites W2108452876 @default.
- W4210510546 cites W2110114082 @default.
- W4210510546 cites W2114125158 @default.
- W4210510546 cites W2120240539 @default.
- W4210510546 cites W2134502189 @default.
- W4210510546 cites W2136039921 @default.
- W4210510546 cites W2139230481 @default.
- W4210510546 cites W2140122473 @default.
- W4210510546 cites W2146292423 @default.
- W4210510546 cites W2157381327 @default.
- W4210510546 cites W2170867031 @default.
- W4210510546 cites W2171250897 @default.
- W4210510546 cites W2233974801 @default.
- W4210510546 cites W2260113709 @default.
- W4210510546 cites W2285459301 @default.
- W4210510546 cites W2318922389 @default.
- W4210510546 cites W2470467076 @default.
- W4210510546 cites W2525867481 @default.
- W4210510546 cites W2736103765 @default.
- W4210510546 cites W2745284508 @default.
- W4210510546 cites W2774655039 @default.
- W4210510546 cites W2797964608 @default.
- W4210510546 cites W2886189266 @default.
- W4210510546 cites W2892741787 @default.
- W4210510546 cites W2898312471 @default.
- W4210510546 cites W2900915766 @default.
- W4210510546 cites W2911558734 @default.
- W4210510546 cites W2911964244 @default.
- W4210510546 cites W2922376354 @default.
- W4210510546 cites W2945976633 @default.
- W4210510546 cites W2952495041 @default.
- W4210510546 cites W2969628488 @default.
- W4210510546 cites W2969705353 @default.
- W4210510546 cites W2982876205 @default.
- W4210510546 cites W2990033966 @default.
- W4210510546 cites W3004092308 @default.
- W4210510546 cites W3010721756 @default.
- W4210510546 cites W3012810655 @default.
- W4210510546 cites W3037966225 @default.
- W4210510546 cites W3042408339 @default.
- W4210510546 cites W3082455399 @default.
- W4210510546 cites W3092018781 @default.
- W4210510546 cites W3096349226 @default.
- W4210510546 cites W3100013323 @default.
- W4210510546 cites W3112552530 @default.
- W4210510546 cites W3123686114 @default.
- W4210510546 cites W3149074076 @default.
- W4210510546 cites W3167020306 @default.
- W4210510546 cites W3184852829 @default.
- W4210510546 cites W3186118520 @default.
- W4210510546 cites W4212883601 @default.
- W4210510546 cites W4236137412 @default.
- W4210510546 doi "https://doi.org/10.1016/j.ajog.2022.01.026" @default.
- W4210510546 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35114187" @default.
- W4210510546 hasPublicationYear "2022" @default.
- W4210510546 type Work @default.
- W4210510546 citedByCount "14" @default.
- W4210510546 countsByYear W42105105462022 @default.
- W4210510546 countsByYear W42105105462023 @default.
- W4210510546 crossrefType "journal-article" @default.
- W4210510546 hasAuthorship W4210510546A5002313261 @default.
- W4210510546 hasAuthorship W4210510546A5019167714 @default.
- W4210510546 hasAuthorship W4210510546A5042919542 @default.
- W4210510546 hasAuthorship W4210510546A5051045029 @default.
- W4210510546 hasAuthorship W4210510546A5057771485 @default.
- W4210510546 hasAuthorship W4210510546A5067773794 @default.
- W4210510546 hasAuthorship W4210510546A5073371382 @default.
- W4210510546 hasAuthorship W4210510546A5079896317 @default.
- W4210510546 hasConcept C11413529 @default.
- W4210510546 hasConcept C119857082 @default.
- W4210510546 hasConcept C126322002 @default.
- W4210510546 hasConcept C131872663 @default.