Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210523093> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4210523093 abstract "The advance of deep learning and audio signal processing techniques has led to serious development on Musical Information retrieval (MIR). Effective audio processing can improve speed, reduce errors, and sometimes increase the accuracy of detecting musical instrument. Spectrographic data is also necessary for many mathematical tools common across Musical Information retrieval. A major aspect of MIR is the categorization of pieces of music. One of the main tools used for categorization tasks in recent years is deep learning, which has led to many advancements in MIR. One such categorization task that deep learning is useful for is the recognition of instruments in a piece of music. In this paper, a new architecture is proposed for audio processing and musical instrument detection using Multilayer Perceptron (MLPs), Convolution Neural Networks (CNN), and Recurrent Neural Networks - Long Short Term Memory (RNN-LSTM). In addition, a number of experiments are implemented using real dataset that contains 20,000 recording. The three deep learning techniques are implemented and compared to present potential new solutions. The usage of processing techniques unique to the field of deep learning is also discussed." @default.
- W4210523093 created "2022-02-08" @default.
- W4210523093 creator A5001069060 @default.
- W4210523093 creator A5078580226 @default.
- W4210523093 date "2021-12-13" @default.
- W4210523093 modified "2023-10-16" @default.
- W4210523093 title "Audio Signal Processing and Musical Instrument Detection using Deep Learning Techniques" @default.
- W4210523093 cites W1965419851 @default.
- W4210523093 cites W2768988016 @default.
- W4210523093 cites W2888806961 @default.
- W4210523093 cites W2911484868 @default.
- W4210523093 cites W2959800215 @default.
- W4210523093 cites W2976001129 @default.
- W4210523093 cites W2997592942 @default.
- W4210523093 cites W3133136787 @default.
- W4210523093 cites W3193428760 @default.
- W4210523093 doi "https://doi.org/10.1109/jac-ecc54461.2021.9691427" @default.
- W4210523093 hasPublicationYear "2021" @default.
- W4210523093 type Work @default.
- W4210523093 citedByCount "1" @default.
- W4210523093 countsByYear W42105230932023 @default.
- W4210523093 crossrefType "proceedings-article" @default.
- W4210523093 hasAuthorship W4210523093A5001069060 @default.
- W4210523093 hasAuthorship W4210523093A5078580226 @default.
- W4210523093 hasConcept C104267543 @default.
- W4210523093 hasConcept C108583219 @default.
- W4210523093 hasConcept C119857082 @default.
- W4210523093 hasConcept C127220857 @default.
- W4210523093 hasConcept C127413603 @default.
- W4210523093 hasConcept C13895895 @default.
- W4210523093 hasConcept C142362112 @default.
- W4210523093 hasConcept C153349607 @default.
- W4210523093 hasConcept C154945302 @default.
- W4210523093 hasConcept C201995342 @default.
- W4210523093 hasConcept C2777946086 @default.
- W4210523093 hasConcept C2780451532 @default.
- W4210523093 hasConcept C28490314 @default.
- W4210523093 hasConcept C41008148 @default.
- W4210523093 hasConcept C558565934 @default.
- W4210523093 hasConcept C64922751 @default.
- W4210523093 hasConcept C81363708 @default.
- W4210523093 hasConcept C84462506 @default.
- W4210523093 hasConcept C9390403 @default.
- W4210523093 hasConcept C94124525 @default.
- W4210523093 hasConceptScore W4210523093C104267543 @default.
- W4210523093 hasConceptScore W4210523093C108583219 @default.
- W4210523093 hasConceptScore W4210523093C119857082 @default.
- W4210523093 hasConceptScore W4210523093C127220857 @default.
- W4210523093 hasConceptScore W4210523093C127413603 @default.
- W4210523093 hasConceptScore W4210523093C13895895 @default.
- W4210523093 hasConceptScore W4210523093C142362112 @default.
- W4210523093 hasConceptScore W4210523093C153349607 @default.
- W4210523093 hasConceptScore W4210523093C154945302 @default.
- W4210523093 hasConceptScore W4210523093C201995342 @default.
- W4210523093 hasConceptScore W4210523093C2777946086 @default.
- W4210523093 hasConceptScore W4210523093C2780451532 @default.
- W4210523093 hasConceptScore W4210523093C28490314 @default.
- W4210523093 hasConceptScore W4210523093C41008148 @default.
- W4210523093 hasConceptScore W4210523093C558565934 @default.
- W4210523093 hasConceptScore W4210523093C64922751 @default.
- W4210523093 hasConceptScore W4210523093C81363708 @default.
- W4210523093 hasConceptScore W4210523093C84462506 @default.
- W4210523093 hasConceptScore W4210523093C9390403 @default.
- W4210523093 hasConceptScore W4210523093C94124525 @default.
- W4210523093 hasLocation W42105230931 @default.
- W4210523093 hasOpenAccess W4210523093 @default.
- W4210523093 hasPrimaryLocation W42105230931 @default.
- W4210523093 hasRelatedWork W1975359510 @default.
- W4210523093 hasRelatedWork W2088690926 @default.
- W4210523093 hasRelatedWork W2098934641 @default.
- W4210523093 hasRelatedWork W2143513834 @default.
- W4210523093 hasRelatedWork W2970176078 @default.
- W4210523093 hasRelatedWork W3097613282 @default.
- W4210523093 hasRelatedWork W4212794605 @default.
- W4210523093 hasRelatedWork W4231351862 @default.
- W4210523093 hasRelatedWork W4315836293 @default.
- W4210523093 hasRelatedWork W2289868279 @default.
- W4210523093 isParatext "false" @default.
- W4210523093 isRetracted "false" @default.
- W4210523093 workType "article" @default.