Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210536819> ?p ?o ?g. }
- W4210536819 endingPage "657" @default.
- W4210536819 startingPage "657" @default.
- W4210536819 abstract "Bushfires pose a severe risk, among others, to humans, wildlife, and infrastructures. Rapid detection of fires is crucial for fire-extinguishing activities and rescue missions. Besides, mapping burned areas also supports evacuation and accessibility to emergency facilities. In this study, we propose a generic approach for detecting fires and burned areas based on machine learning (ML) approaches and remote sensing data. While most studies investigated either the detection of fires or mapping burned areas, we addressed and evaluated, in particular, the combined detection on three selected case study regions. Multispectral Sentinel-2 images represent the input data for the supervised ML models. First, we generated the reference data for the three target classes, burned, unburned, and fire, since no reference data were available. Second, the three regional fire datasets were preprocessed and divided into training, validation, and test subsets according to a defined schema. Furthermore, an undersampling approach ensured the balancing of the datasets. Third, seven selected supervised classification approaches were used and evaluated, including tree-based models, a self-organizing map, an artificial neural network, and a one-dimensional convolutional neural network (1D-CNN). All selected ML approaches achieved satisfying classification results. Moreover, they performed a highly accurate fire detection, while separating burned and unburned areas was slightly more challenging. The 1D-CNN and extremely randomized tree were the best-performing models with an overall accuracy score of 98% on the test subsets. Even on an unknown test dataset, the 1D-CNN achieved high classification accuracies. This generalization is even more valuable for any use-case scenario, including the organization of fire-fighting activities or civil protection. The proposed combined detection could be extended and enhanced with crowdsourced data in further studies." @default.
- W4210536819 created "2022-02-08" @default.
- W4210536819 creator A5022571586 @default.
- W4210536819 creator A5051553481 @default.
- W4210536819 date "2022-01-29" @default.
- W4210536819 modified "2023-09-26" @default.
- W4210536819 title "Supervised Machine Learning Approaches on Multispectral Remote Sensing Data for a Combined Detection of Fire and Burned Area" @default.
- W4210536819 cites W148806365 @default.
- W4210536819 cites W1492038214 @default.
- W4210536819 cites W1521436688 @default.
- W4210536819 cites W1966272358 @default.
- W4210536819 cites W1988790447 @default.
- W4210536819 cites W1989363703 @default.
- W4210536819 cites W1990517717 @default.
- W4210536819 cites W1998877174 @default.
- W4210536819 cites W2004938573 @default.
- W4210536819 cites W2011409266 @default.
- W4210536819 cites W2023649892 @default.
- W4210536819 cites W2040870580 @default.
- W4210536819 cites W2047236787 @default.
- W4210536819 cites W2053724458 @default.
- W4210536819 cites W2056132907 @default.
- W4210536819 cites W2058820699 @default.
- W4210536819 cites W2069611764 @default.
- W4210536819 cites W2076007875 @default.
- W4210536819 cites W2079624623 @default.
- W4210536819 cites W2088821123 @default.
- W4210536819 cites W2092380336 @default.
- W4210536819 cites W2093008472 @default.
- W4210536819 cites W2109947221 @default.
- W4210536819 cites W2121262525 @default.
- W4210536819 cites W2123982219 @default.
- W4210536819 cites W2125861824 @default.
- W4210536819 cites W2138408852 @default.
- W4210536819 cites W2144059664 @default.
- W4210536819 cites W2152523941 @default.
- W4210536819 cites W2167144335 @default.
- W4210536819 cites W2171210136 @default.
- W4210536819 cites W2174393741 @default.
- W4210536819 cites W2200518663 @default.
- W4210536819 cites W2215149882 @default.
- W4210536819 cites W2295931476 @default.
- W4210536819 cites W2483900378 @default.
- W4210536819 cites W2527769729 @default.
- W4210536819 cites W2742012967 @default.
- W4210536819 cites W2765974277 @default.
- W4210536819 cites W2769774644 @default.
- W4210536819 cites W2770853283 @default.
- W4210536819 cites W2781727702 @default.
- W4210536819 cites W2782817750 @default.
- W4210536819 cites W2789469790 @default.
- W4210536819 cites W2803245295 @default.
- W4210536819 cites W2806912980 @default.
- W4210536819 cites W2889670574 @default.
- W4210536819 cites W2891747104 @default.
- W4210536819 cites W2902401595 @default.
- W4210536819 cites W2905300275 @default.
- W4210536819 cites W2909379809 @default.
- W4210536819 cites W2913612973 @default.
- W4210536819 cites W2922237835 @default.
- W4210536819 cites W2946679685 @default.
- W4210536819 cites W2949864307 @default.
- W4210536819 cites W2964960069 @default.
- W4210536819 cites W2980881023 @default.
- W4210536819 cites W2995180237 @default.
- W4210536819 cites W2998082161 @default.
- W4210536819 cites W3003452346 @default.
- W4210536819 cites W3007286176 @default.
- W4210536819 cites W3013341479 @default.
- W4210536819 cites W3042626839 @default.
- W4210536819 cites W3045606376 @default.
- W4210536819 cites W3105226351 @default.
- W4210536819 cites W3124539583 @default.
- W4210536819 cites W3139501902 @default.
- W4210536819 cites W3175322496 @default.
- W4210536819 cites W3176110204 @default.
- W4210536819 doi "https://doi.org/10.3390/rs14030657" @default.
- W4210536819 hasPublicationYear "2022" @default.
- W4210536819 type Work @default.
- W4210536819 citedByCount "8" @default.
- W4210536819 countsByYear W42105368192022 @default.
- W4210536819 countsByYear W42105368192023 @default.
- W4210536819 crossrefType "journal-article" @default.
- W4210536819 hasAuthorship W4210536819A5022571586 @default.
- W4210536819 hasAuthorship W4210536819A5051553481 @default.
- W4210536819 hasBestOaLocation W42105368191 @default.
- W4210536819 hasConcept C119857082 @default.
- W4210536819 hasConcept C124101348 @default.
- W4210536819 hasConcept C136536468 @default.
- W4210536819 hasConcept C153180895 @default.
- W4210536819 hasConcept C154945302 @default.
- W4210536819 hasConcept C159078339 @default.
- W4210536819 hasConcept C16910744 @default.
- W4210536819 hasConcept C173163844 @default.
- W4210536819 hasConcept C199360897 @default.
- W4210536819 hasConcept C205649164 @default.
- W4210536819 hasConcept C41008148 @default.
- W4210536819 hasConcept C62649853 @default.