Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210537641> ?p ?o ?g. }
- W4210537641 endingPage "2039" @default.
- W4210537641 startingPage "2024" @default.
- W4210537641 abstract "Abstract Radiative transfer simulations and remote sensing studies fundamentally require accurate and efficient computation of the optical properties of non-spherical particles. This paper proposes a deep learning (DL) scheme in conjunction with an optical property database to achieve this goal. Deep neural network (DNN) architectures were obtained from a dataset of the optical properties of super-spheroids with extensive shape parameters, size parameters, and refractive indices. The dataset was computed through the invariant imbedding T -matrix method. Four separate DNN architectures were created to compute the extinction efficiency factor, single-scattering albedo, asymmetry factor, and phase matrix. The criterion for designing these neural networks was the achievement of the highest prediction accuracy with minimal DNN parameters. The numerical results demonstrate that the determination coefficients are greater than 0.999 between the prediction values from the neural networks and the truth values from the database, which indicates that the DNN can reproduce the optical properties in the dataset with high accuracy. In addition, the DNN model can robustly predict the optical properties of particles with high accuracy for shape parameters or refractive indices that are unavailable in the database. Importantly, the ratio of the database size (∼127 GB) to that of the DNN parameters (∼20 MB) is approximately 6810, implying that the DNN model can be treated as a highly compressed database that can be used as an alternative to the original database for real-time computing of the optical properties of non-spherical particles in radiative transfer and atmospheric models." @default.
- W4210537641 created "2022-02-08" @default.
- W4210537641 creator A5033178355 @default.
- W4210537641 creator A5036577012 @default.
- W4210537641 creator A5037692949 @default.
- W4210537641 creator A5086413614 @default.
- W4210537641 date "2022-02-05" @default.
- W4210537641 modified "2023-10-14" @default.
- W4210537641 title "Application of a Neural Network to Store and Compute the Optical Properties of Non-Spherical Particles" @default.
- W4210537641 cites W1724494733 @default.
- W4210537641 cites W1973755324 @default.
- W4210537641 cites W1975479292 @default.
- W4210537641 cites W1981719480 @default.
- W4210537641 cites W1983299260 @default.
- W4210537641 cites W1990646419 @default.
- W4210537641 cites W1996647704 @default.
- W4210537641 cites W2006784304 @default.
- W4210537641 cites W2007233406 @default.
- W4210537641 cites W2009110968 @default.
- W4210537641 cites W2010365239 @default.
- W4210537641 cites W2023751161 @default.
- W4210537641 cites W2025536383 @default.
- W4210537641 cites W2030220433 @default.
- W4210537641 cites W2031675844 @default.
- W4210537641 cites W2039594225 @default.
- W4210537641 cites W2043238000 @default.
- W4210537641 cites W2046779413 @default.
- W4210537641 cites W2048955810 @default.
- W4210537641 cites W2049227959 @default.
- W4210537641 cites W2057077394 @default.
- W4210537641 cites W2059759349 @default.
- W4210537641 cites W2060788232 @default.
- W4210537641 cites W2062987907 @default.
- W4210537641 cites W2070448625 @default.
- W4210537641 cites W2075158263 @default.
- W4210537641 cites W2078586903 @default.
- W4210537641 cites W2098024340 @default.
- W4210537641 cites W2100495367 @default.
- W4210537641 cites W2104947739 @default.
- W4210537641 cites W2125542949 @default.
- W4210537641 cites W2130393543 @default.
- W4210537641 cites W2137567951 @default.
- W4210537641 cites W2142063750 @default.
- W4210537641 cites W2144824126 @default.
- W4210537641 cites W2148160712 @default.
- W4210537641 cites W2148854824 @default.
- W4210537641 cites W2151699331 @default.
- W4210537641 cites W2153026037 @default.
- W4210537641 cites W2154114222 @default.
- W4210537641 cites W2159722679 @default.
- W4210537641 cites W2160433229 @default.
- W4210537641 cites W2160815625 @default.
- W4210537641 cites W2161381512 @default.
- W4210537641 cites W2161983569 @default.
- W4210537641 cites W2162246342 @default.
- W4210537641 cites W2165207609 @default.
- W4210537641 cites W2167929905 @default.
- W4210537641 cites W2218731372 @default.
- W4210537641 cites W2257979135 @default.
- W4210537641 cites W2500751094 @default.
- W4210537641 cites W2554285426 @default.
- W4210537641 cites W2560280850 @default.
- W4210537641 cites W2580930080 @default.
- W4210537641 cites W2777915948 @default.
- W4210537641 cites W2784831205 @default.
- W4210537641 cites W2902986750 @default.
- W4210537641 cites W2904110278 @default.
- W4210537641 cites W2904430365 @default.
- W4210537641 cites W2912587218 @default.
- W4210537641 cites W2914803759 @default.
- W4210537641 cites W2919115771 @default.
- W4210537641 cites W2973731563 @default.
- W4210537641 cites W2981420978 @default.
- W4210537641 cites W3121497926 @default.
- W4210537641 cites W3157081516 @default.
- W4210537641 cites W3160434454 @default.
- W4210537641 cites W3163074978 @default.
- W4210537641 cites W4210993685 @default.
- W4210537641 cites W4231109964 @default.
- W4210537641 doi "https://doi.org/10.1007/s00376-021-1375-5" @default.
- W4210537641 hasPublicationYear "2022" @default.
- W4210537641 type Work @default.
- W4210537641 citedByCount "3" @default.
- W4210537641 countsByYear W42105376412022 @default.
- W4210537641 countsByYear W42105376412023 @default.
- W4210537641 crossrefType "journal-article" @default.
- W4210537641 hasAuthorship W4210537641A5033178355 @default.
- W4210537641 hasAuthorship W4210537641A5036577012 @default.
- W4210537641 hasAuthorship W4210537641A5037692949 @default.
- W4210537641 hasAuthorship W4210537641A5086413614 @default.
- W4210537641 hasBestOaLocation W42105376411 @default.
- W4210537641 hasConcept C11413529 @default.
- W4210537641 hasConcept C120665830 @default.
- W4210537641 hasConcept C121332964 @default.
- W4210537641 hasConcept C154945302 @default.
- W4210537641 hasConcept C190470478 @default.
- W4210537641 hasConcept C2778552899 @default.
- W4210537641 hasConcept C33923547 @default.