Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210544679> ?p ?o ?g. }
- W4210544679 endingPage "112907" @default.
- W4210544679 startingPage "112907" @default.
- W4210544679 abstract "Adaptive management requires rangeland managers to respond to changing forage conditions (e.g., standing herbaceous biomass) within the grazing season at the scale of individual pastures. While within-season biomass can be measured or estimated in the field, it is often impractical to make field measurements in extensive rangeland systems with adequate frequency and spatial representation for responsive decision-making by rangeland managers. We sought to develop a single model to accurately predict daily herbaceous biomass across seasonally and annually varying conditions from the Harmonized Landsat-Sentinel satellite time series. We also sought to assess how information about plant community composition derived from a high-spatial resolution map would improve model performance. We used herbaceous biomass data from 1764 ground observations collected over 8 years in North American shortgrass steppe for training in a cross-validated model selection approach to evaluate (1) predictive performance of candidate models both spatially and temporally, (2) relative variable importance of individual spectral bands, vegetation indices, and recently developed broadband spectral angle indices, and (3) the degree to which including plant community composition improved model performance. All 11 candidate models identified in the model selection procedure contained a band angle index and an individual spectral band, and 6 contained one of each input feature type, demonstrating the benefit of combining spectral features for predicting herbaceous biomass across varying conditions. The spatial and temporal cross-validation and selection procedures produced the same top model with similar performance (mean absolute error = 151–182 kg ha−1; R2 = 0.75–0.79), suggesting that a single model performs well over space and time. Including plant community composition in the model reduced mean absolute error by 11–13%. Bootstrapping revealed that –six to seven years of training data were required to achieve consistent model performance across years with varying environmental conditions (e.g., wet, average, dry). The top model could accurately detect (70–87% accuracy) the week that biomass dropped below management-related thresholds as low as 450 kg ha−1 in an independent dataset (n = 950) with modest commission error (10–26%). We discuss how maps showing the probability that herbaceous biomass is below a given threshold can support adaptive management in extensive semiarid rangelands across differing scenarios of risk perception and avoidance. In addition to producing maps to support precision rangeland management strategies, this study demonstrates the importance of combining complementary vegetation indices and acquiring long-term training datasets to achieve reliable predictions of herbaceous standing biomass in highly variable systems." @default.
- W4210544679 created "2022-02-08" @default.
- W4210544679 creator A5005249696 @default.
- W4210544679 creator A5011607769 @default.
- W4210544679 creator A5050605000 @default.
- W4210544679 creator A5053897338 @default.
- W4210544679 creator A5084121143 @default.
- W4210544679 date "2022-03-01" @default.
- W4210544679 modified "2023-09-25" @default.
- W4210544679 title "Monitoring standing herbaceous biomass and thresholds in semiarid rangelands from harmonized Landsat 8 and Sentinel-2 imagery to support within-season adaptive management" @default.
- W4210544679 cites W1614886892 @default.
- W4210544679 cites W1746084293 @default.
- W4210544679 cites W1912201472 @default.
- W4210544679 cites W1963651998 @default.
- W4210544679 cites W1977670320 @default.
- W4210544679 cites W1977993491 @default.
- W4210544679 cites W2004019515 @default.
- W4210544679 cites W2004813502 @default.
- W4210544679 cites W2007734087 @default.
- W4210544679 cites W2035045244 @default.
- W4210544679 cites W2079167274 @default.
- W4210544679 cites W2086437276 @default.
- W4210544679 cites W2091378956 @default.
- W4210544679 cites W2092722122 @default.
- W4210544679 cites W2092785500 @default.
- W4210544679 cites W2094420085 @default.
- W4210544679 cites W2113281985 @default.
- W4210544679 cites W2121973897 @default.
- W4210544679 cites W2136256197 @default.
- W4210544679 cites W2138309079 @default.
- W4210544679 cites W2143659979 @default.
- W4210544679 cites W2150853404 @default.
- W4210544679 cites W2169376470 @default.
- W4210544679 cites W2194089420 @default.
- W4210544679 cites W2508621980 @default.
- W4210544679 cites W2509463322 @default.
- W4210544679 cites W2511188994 @default.
- W4210544679 cites W2514171204 @default.
- W4210544679 cites W2533828853 @default.
- W4210544679 cites W2572344910 @default.
- W4210544679 cites W2592784952 @default.
- W4210544679 cites W2753237419 @default.
- W4210544679 cites W2792577625 @default.
- W4210544679 cites W2804737541 @default.
- W4210544679 cites W2810257918 @default.
- W4210544679 cites W2889940739 @default.
- W4210544679 cites W2897285410 @default.
- W4210544679 cites W2951974453 @default.
- W4210544679 cites W2964757062 @default.
- W4210544679 cites W2979541335 @default.
- W4210544679 cites W2990860778 @default.
- W4210544679 cites W3004741759 @default.
- W4210544679 cites W3036051036 @default.
- W4210544679 cites W3040786772 @default.
- W4210544679 cites W3049509449 @default.
- W4210544679 cites W3130986444 @default.
- W4210544679 cites W3152939409 @default.
- W4210544679 cites W3164383220 @default.
- W4210544679 cites W3187799129 @default.
- W4210544679 cites W3212752397 @default.
- W4210544679 doi "https://doi.org/10.1016/j.rse.2022.112907" @default.
- W4210544679 hasPublicationYear "2022" @default.
- W4210544679 type Work @default.
- W4210544679 citedByCount "11" @default.
- W4210544679 countsByYear W42105446792022 @default.
- W4210544679 countsByYear W42105446792023 @default.
- W4210544679 crossrefType "journal-article" @default.
- W4210544679 hasAuthorship W4210544679A5005249696 @default.
- W4210544679 hasAuthorship W4210544679A5011607769 @default.
- W4210544679 hasAuthorship W4210544679A5050605000 @default.
- W4210544679 hasAuthorship W4210544679A5053897338 @default.
- W4210544679 hasAuthorship W4210544679A5084121143 @default.
- W4210544679 hasBestOaLocation W42105446791 @default.
- W4210544679 hasConcept C115540264 @default.
- W4210544679 hasConcept C130989795 @default.
- W4210544679 hasConcept C142724271 @default.
- W4210544679 hasConcept C18903297 @default.
- W4210544679 hasConcept C205649164 @default.
- W4210544679 hasConcept C25989453 @default.
- W4210544679 hasConcept C2776133958 @default.
- W4210544679 hasConcept C2778102629 @default.
- W4210544679 hasConcept C30820588 @default.
- W4210544679 hasConcept C39432304 @default.
- W4210544679 hasConcept C54286561 @default.
- W4210544679 hasConcept C62649853 @default.
- W4210544679 hasConcept C71924100 @default.
- W4210544679 hasConcept C86803240 @default.
- W4210544679 hasConceptScore W4210544679C115540264 @default.
- W4210544679 hasConceptScore W4210544679C130989795 @default.
- W4210544679 hasConceptScore W4210544679C142724271 @default.
- W4210544679 hasConceptScore W4210544679C18903297 @default.
- W4210544679 hasConceptScore W4210544679C205649164 @default.
- W4210544679 hasConceptScore W4210544679C25989453 @default.
- W4210544679 hasConceptScore W4210544679C2776133958 @default.
- W4210544679 hasConceptScore W4210544679C2778102629 @default.
- W4210544679 hasConceptScore W4210544679C30820588 @default.
- W4210544679 hasConceptScore W4210544679C39432304 @default.
- W4210544679 hasConceptScore W4210544679C54286561 @default.