Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210547008> ?p ?o ?g. }
- W4210547008 abstract "This study aimed to investigate the impact of a deep learning (DL)-based denoising method on the image quality and lesion detectability of 18F-FDG positron emission tomography (PET) images.Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with an acquisition of 180 s per bed position were retrospectively included. The list-mode data were rebinned into four datasets: 100% (reference), 75%, 50%, and 33.3% of the total counts, and then reconstructed by OSEM algorithm and post-processed with the DL and Gaussian filter (GS). The image quality was assessed using a 5-point Likert scale, and FDG-avid lesions were counted to measure lesion detectability. Standardized uptake values (SUVs) in livers and lesions, liver signal-to-noise ratio (SNR) and target-to-background ratio (TBR) values were compared between the methods. Subgroup analyses compared TBRs after categorizing lesions based on parameters like lesion diameter, uptake or patient habitus.The DL method showed superior performance regarding image noise and inferior performance regarding lesion contrast in the qualitative assessment. More than 96.8% of the lesions were successfully identified in DL images. Excellent agreements on SUV in livers and lesions were found. The DL method significantly improved the liver SNR for count reduction down to 33.3% (p < 0.001). Lesion TBR was not significantly different between DL and reference images of the 75% dataset; furthermore, there was no significant difference either for lesions of > 10 mm or lesions in BMIs of > 25. For the 50% dataset, there was no significant difference between DL and reference images for TBR of lesion with > 15 mm or higher uptake than liver.The developed DL method improved both liver SNR and lesion TBR indicating better image quality and lesion conspicuousness compared to GS method. Compared with the reference, it showed non-inferior image quality with reduced counts by 25-50% under various conditions." @default.
- W4210547008 created "2022-02-08" @default.
- W4210547008 creator A5005694880 @default.
- W4210547008 creator A5018863416 @default.
- W4210547008 creator A5019394909 @default.
- W4210547008 creator A5028383406 @default.
- W4210547008 creator A5034062231 @default.
- W4210547008 creator A5034605417 @default.
- W4210547008 creator A5040212201 @default.
- W4210547008 creator A5041421534 @default.
- W4210547008 creator A5076845933 @default.
- W4210547008 creator A5088821817 @default.
- W4210547008 date "2022-02-04" @default.
- W4210547008 modified "2023-10-16" @default.
- W4210547008 title "Deep learning-assisted PET imaging achieves fast scan/low-dose examination" @default.
- W4210547008 cites W1943992522 @default.
- W4210547008 cites W1984858185 @default.
- W4210547008 cites W1998929291 @default.
- W4210547008 cites W2002480337 @default.
- W4210547008 cites W2007766294 @default.
- W4210547008 cites W2061378398 @default.
- W4210547008 cites W2069926321 @default.
- W4210547008 cites W2088783247 @default.
- W4210547008 cites W2096719319 @default.
- W4210547008 cites W2104614756 @default.
- W4210547008 cites W2108019762 @default.
- W4210547008 cites W2108314163 @default.
- W4210547008 cites W2124804830 @default.
- W4210547008 cites W2131900456 @default.
- W4210547008 cites W2137571255 @default.
- W4210547008 cites W2146924272 @default.
- W4210547008 cites W2160306960 @default.
- W4210547008 cites W2194775991 @default.
- W4210547008 cites W2801585709 @default.
- W4210547008 cites W2914020168 @default.
- W4210547008 cites W2958646971 @default.
- W4210547008 cites W2963446712 @default.
- W4210547008 cites W2970280802 @default.
- W4210547008 cites W2976839768 @default.
- W4210547008 cites W2982065386 @default.
- W4210547008 cites W2996889947 @default.
- W4210547008 cites W3000495410 @default.
- W4210547008 cites W3037333647 @default.
- W4210547008 cites W3041500444 @default.
- W4210547008 cites W3047729951 @default.
- W4210547008 cites W3087009452 @default.
- W4210547008 cites W3110460200 @default.
- W4210547008 cites W3122629112 @default.
- W4210547008 cites W3126557061 @default.
- W4210547008 cites W3133816304 @default.
- W4210547008 cites W3136586316 @default.
- W4210547008 cites W3139110331 @default.
- W4210547008 cites W3147126934 @default.
- W4210547008 cites W3155635409 @default.
- W4210547008 cites W3186103791 @default.
- W4210547008 doi "https://doi.org/10.1186/s40658-022-00431-9" @default.
- W4210547008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35122172" @default.
- W4210547008 hasPublicationYear "2022" @default.
- W4210547008 type Work @default.
- W4210547008 citedByCount "12" @default.
- W4210547008 countsByYear W42105470082022 @default.
- W4210547008 countsByYear W42105470082023 @default.
- W4210547008 crossrefType "journal-article" @default.
- W4210547008 hasAuthorship W4210547008A5005694880 @default.
- W4210547008 hasAuthorship W4210547008A5018863416 @default.
- W4210547008 hasAuthorship W4210547008A5019394909 @default.
- W4210547008 hasAuthorship W4210547008A5028383406 @default.
- W4210547008 hasAuthorship W4210547008A5034062231 @default.
- W4210547008 hasAuthorship W4210547008A5034605417 @default.
- W4210547008 hasAuthorship W4210547008A5040212201 @default.
- W4210547008 hasAuthorship W4210547008A5041421534 @default.
- W4210547008 hasAuthorship W4210547008A5076845933 @default.
- W4210547008 hasAuthorship W4210547008A5088821817 @default.
- W4210547008 hasBestOaLocation W42105470081 @default.
- W4210547008 hasConcept C115961682 @default.
- W4210547008 hasConcept C126838900 @default.
- W4210547008 hasConcept C142724271 @default.
- W4210547008 hasConcept C154945302 @default.
- W4210547008 hasConcept C2775842073 @default.
- W4210547008 hasConcept C2781156865 @default.
- W4210547008 hasConcept C2989005 @default.
- W4210547008 hasConcept C41008148 @default.
- W4210547008 hasConcept C55020928 @default.
- W4210547008 hasConcept C71924100 @default.
- W4210547008 hasConceptScore W4210547008C115961682 @default.
- W4210547008 hasConceptScore W4210547008C126838900 @default.
- W4210547008 hasConceptScore W4210547008C142724271 @default.
- W4210547008 hasConceptScore W4210547008C154945302 @default.
- W4210547008 hasConceptScore W4210547008C2775842073 @default.
- W4210547008 hasConceptScore W4210547008C2781156865 @default.
- W4210547008 hasConceptScore W4210547008C2989005 @default.
- W4210547008 hasConceptScore W4210547008C41008148 @default.
- W4210547008 hasConceptScore W4210547008C55020928 @default.
- W4210547008 hasConceptScore W4210547008C71924100 @default.
- W4210547008 hasFunder F4320317789 @default.
- W4210547008 hasFunder F4320321885 @default.
- W4210547008 hasIssue "1" @default.
- W4210547008 hasLocation W42105470081 @default.
- W4210547008 hasLocation W42105470082 @default.
- W4210547008 hasLocation W42105470083 @default.