Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210558261> ?p ?o ?g. }
- W4210558261 abstract "Abstract Background and Purpose Chronic active multiple sclerosis (MS) lesions are characterized by a paramagnetic rim at the edge of the lesion and are associated with increased disability in patients. Quantitative susceptibility mapping (QSM) is an MRI technique that is sensitive to chronic active lesions, termed rim+ lesions on the QSM. We present QSMRim-Net, a data imbalance-aware deep neural network that fuses lesion-level radiomic and convolutional image features for automated identification of rim+ lesions on QSM. Methods QSM and T2-weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRI of the brain were collected at 3T for 172 MS patients. Rim+ lesions were manually annotated by two human experts, followed by consensus from a third expert, for a total of 177 rim+ and 3986 rim negative (rim-) lesions. Our automated rim+ detection algorithm, QSMRim-Net, consists of a two-branch feature extraction network and a synthetic minority oversampling network to classify rim+ lesions. The first network branch is for image feature extraction from the QSM and T2-FLAIR, and the second network branch is a fully connected network for QSM lesion-level radiomic feature extraction. The oversampling network is designed to increase classification performance with imbalanced data. Results On a lesion-level, in a five-fold cross validation framework, the proposed QSMRim-Net detected rim+ lesions with a partial area under the receiver operating characteristic curve (pROC AUC) of 0.760, where clinically relevant false positive rates of less than 0.1 were considered. The method attained an area under the precision recall curve (PR AUC) of 0.704. QSMRim-Net out-performed other state-of-the-art methods applied to the QSM on both pROC AUC and PR AUC. On a subject-level, comparing the predicted rim+ lesion count and the human expert annotated count, QSMRim-Net achieved the lowest mean square error of 0.98 and the highest correlation of 0.89 (95% CI: 0.86, 0.92). Conclusion This study develops a novel automated deep neural network for rim+ MS lesion identification using T2-FLAIR and QSM images." @default.
- W4210558261 created "2022-02-08" @default.
- W4210558261 creator A5000502027 @default.
- W4210558261 creator A5016856927 @default.
- W4210558261 creator A5024618722 @default.
- W4210558261 creator A5041710973 @default.
- W4210558261 creator A5046781760 @default.
- W4210558261 creator A5050704727 @default.
- W4210558261 creator A5074743331 @default.
- W4210558261 creator A5081820729 @default.
- W4210558261 date "2022-02-01" @default.
- W4210558261 modified "2023-09-26" @default.
- W4210558261 title "QSMRim-Net: Imbalance-Aware Learning for Identification of Chronic Active Multiple Sclerosis Lesions on Quantitative Susceptibility Maps" @default.
- W4210558261 cites W1578762211 @default.
- W4210558261 cites W1763205699 @default.
- W4210558261 cites W1848702082 @default.
- W4210558261 cites W2006096283 @default.
- W4210558261 cites W2020778970 @default.
- W4210558261 cites W2050900769 @default.
- W4210558261 cites W2055547320 @default.
- W4210558261 cites W2059498402 @default.
- W4210558261 cites W2091422377 @default.
- W4210558261 cites W2102848905 @default.
- W4210558261 cites W2115140807 @default.
- W4210558261 cites W2121588703 @default.
- W4210558261 cites W2128739912 @default.
- W4210558261 cites W2142921985 @default.
- W4210558261 cites W2148143831 @default.
- W4210558261 cites W2154189431 @default.
- W4210558261 cites W2170991918 @default.
- W4210558261 cites W2194775991 @default.
- W4210558261 cites W2235034379 @default.
- W4210558261 cites W2287231805 @default.
- W4210558261 cites W2291196207 @default.
- W4210558261 cites W2338137334 @default.
- W4210558261 cites W2419062639 @default.
- W4210558261 cites W2542350582 @default.
- W4210558261 cites W2575552683 @default.
- W4210558261 cites W2593271907 @default.
- W4210558261 cites W2603052230 @default.
- W4210558261 cites W2763665792 @default.
- W4210558261 cites W2767128594 @default.
- W4210558261 cites W2774994588 @default.
- W4210558261 cites W2788632940 @default.
- W4210558261 cites W2801689542 @default.
- W4210558261 cites W2904004727 @default.
- W4210558261 cites W2936479322 @default.
- W4210558261 cites W2963870144 @default.
- W4210558261 cites W2967069002 @default.
- W4210558261 cites W3008060450 @default.
- W4210558261 cites W3049268149 @default.
- W4210558261 cites W3082167472 @default.
- W4210558261 cites W3083138635 @default.
- W4210558261 cites W3093429277 @default.
- W4210558261 cites W3134905845 @default.
- W4210558261 cites W3164617602 @default.
- W4210558261 cites W3166780685 @default.
- W4210558261 cites W3176210630 @default.
- W4210558261 cites W3198579878 @default.
- W4210558261 cites W3206607677 @default.
- W4210558261 cites W75797622 @default.
- W4210558261 doi "https://doi.org/10.1101/2022.01.31.478482" @default.
- W4210558261 hasPublicationYear "2022" @default.
- W4210558261 type Work @default.
- W4210558261 citedByCount "0" @default.
- W4210558261 crossrefType "posted-content" @default.
- W4210558261 hasAuthorship W4210558261A5000502027 @default.
- W4210558261 hasAuthorship W4210558261A5016856927 @default.
- W4210558261 hasAuthorship W4210558261A5024618722 @default.
- W4210558261 hasAuthorship W4210558261A5041710973 @default.
- W4210558261 hasAuthorship W4210558261A5046781760 @default.
- W4210558261 hasAuthorship W4210558261A5050704727 @default.
- W4210558261 hasAuthorship W4210558261A5074743331 @default.
- W4210558261 hasAuthorship W4210558261A5081820729 @default.
- W4210558261 hasBestOaLocation W42105582611 @default.
- W4210558261 hasConcept C101070640 @default.
- W4210558261 hasConcept C118552586 @default.
- W4210558261 hasConcept C119857082 @default.
- W4210558261 hasConcept C126838900 @default.
- W4210558261 hasConcept C142724271 @default.
- W4210558261 hasConcept C143409427 @default.
- W4210558261 hasConcept C153180895 @default.
- W4210558261 hasConcept C154945302 @default.
- W4210558261 hasConcept C2780640218 @default.
- W4210558261 hasConcept C2781156865 @default.
- W4210558261 hasConcept C41008148 @default.
- W4210558261 hasConcept C52622490 @default.
- W4210558261 hasConcept C58471807 @default.
- W4210558261 hasConcept C71924100 @default.
- W4210558261 hasConcept C81363708 @default.
- W4210558261 hasConceptScore W4210558261C101070640 @default.
- W4210558261 hasConceptScore W4210558261C118552586 @default.
- W4210558261 hasConceptScore W4210558261C119857082 @default.
- W4210558261 hasConceptScore W4210558261C126838900 @default.
- W4210558261 hasConceptScore W4210558261C142724271 @default.
- W4210558261 hasConceptScore W4210558261C143409427 @default.
- W4210558261 hasConceptScore W4210558261C153180895 @default.
- W4210558261 hasConceptScore W4210558261C154945302 @default.
- W4210558261 hasConceptScore W4210558261C2780640218 @default.
- W4210558261 hasConceptScore W4210558261C2781156865 @default.