Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210567336> ?p ?o ?g. }
- W4210567336 endingPage "16991" @default.
- W4210567336 startingPage "16977" @default.
- W4210567336 abstract "With the growing availability and complexity of time-series sequences, scalable and robust machine learning approaches are required that overcome the sampling challenge of quantitatively sufficient training data. Following the research trend towards the deep learning-based analysis of time-series encoded as images, this study proposes a time-series imaging workflow that overcomes the challenge of quantitatively limited sensor data across domains (i.e., medicine and engineering). After systematically identifying the three relevant dimensions that affect the performance of the deep learning-based analysis of visualized time-series data, we performed a benchmarking evaluation with a total of 24 unique convolutional neural network models. Following a two-level transfer learning investigation, we reveal that fine-tuning the mid-level features results in the best classification performance. As a result, we present an optimized representation of the VGG16 network, which outperforms previous studies in the field. Our approach is accurate, robust, and manifests internal and external validity. By only using the raw time-series data, our model does not require manual feature engineering, being of high practical relevance. As the post-hoc analysis of our results reveals that our model allows automated extraction of meaningful features based on the trend of the underlying time-series data, our study also adds to explainable artificial intelligence. Furthermore, our proposed workflow reduces the sequence length of the input data while preserving all information. Especially with the hurdle of long-term dependencies in sequential time-series data, we overcome related work’s limitation of the vanishing gradients problem and contribute to the sequential learning theory in artificial intelligence." @default.
- W4210567336 created "2022-02-08" @default.
- W4210567336 creator A5018898545 @default.
- W4210567336 creator A5032394209 @default.
- W4210567336 creator A5052190238 @default.
- W4210567336 date "2022-01-01" @default.
- W4210567336 modified "2023-10-15" @default.
- W4210567336 title "Benchmarking Transfer Learning Strategies in Time-Series Imaging: Recommendations for Analyzing Raw Sensor Data" @default.
- W4210567336 cites W1605707764 @default.
- W4210567336 cites W1894414046 @default.
- W4210567336 cites W1912911209 @default.
- W4210567336 cites W1926815826 @default.
- W4210567336 cites W1941659294 @default.
- W4210567336 cites W2005844746 @default.
- W4210567336 cites W2028879371 @default.
- W4210567336 cites W2050493487 @default.
- W4210567336 cites W2081710223 @default.
- W4210567336 cites W2095739681 @default.
- W4210567336 cites W2097747115 @default.
- W4210567336 cites W2103448012 @default.
- W4210567336 cites W2106595237 @default.
- W4210567336 cites W2107878631 @default.
- W4210567336 cites W2108598243 @default.
- W4210567336 cites W2117505628 @default.
- W4210567336 cites W2145461202 @default.
- W4210567336 cites W2161158373 @default.
- W4210567336 cites W2165698076 @default.
- W4210567336 cites W2184207288 @default.
- W4210567336 cites W2295107390 @default.
- W4210567336 cites W2299944668 @default.
- W4210567336 cites W2395579298 @default.
- W4210567336 cites W2404692435 @default.
- W4210567336 cites W2531409750 @default.
- W4210567336 cites W2560286635 @default.
- W4210567336 cites W2583036053 @default.
- W4210567336 cites W2588336250 @default.
- W4210567336 cites W2588510384 @default.
- W4210567336 cites W2759287047 @default.
- W4210567336 cites W2762364541 @default.
- W4210567336 cites W2764276316 @default.
- W4210567336 cites W2774942496 @default.
- W4210567336 cites W2891503716 @default.
- W4210567336 cites W2892035503 @default.
- W4210567336 cites W2919115771 @default.
- W4210567336 cites W2942586591 @default.
- W4210567336 cites W2944531168 @default.
- W4210567336 cites W2962414238 @default.
- W4210567336 cites W2962858109 @default.
- W4210567336 cites W2964140963 @default.
- W4210567336 cites W2968923792 @default.
- W4210567336 cites W2993687209 @default.
- W4210567336 cites W2997654184 @default.
- W4210567336 cites W3003516066 @default.
- W4210567336 cites W3008252200 @default.
- W4210567336 cites W3013529009 @default.
- W4210567336 cites W3021970402 @default.
- W4210567336 cites W3023384820 @default.
- W4210567336 cites W3033072849 @default.
- W4210567336 cites W3035107441 @default.
- W4210567336 cites W3035252449 @default.
- W4210567336 cites W3035423599 @default.
- W4210567336 cites W3037110414 @default.
- W4210567336 cites W3038777551 @default.
- W4210567336 cites W3047381018 @default.
- W4210567336 cites W3082684473 @default.
- W4210567336 cites W3085810866 @default.
- W4210567336 cites W3091113335 @default.
- W4210567336 cites W3093478721 @default.
- W4210567336 cites W3104887532 @default.
- W4210567336 cites W3128537779 @default.
- W4210567336 cites W3144631866 @default.
- W4210567336 cites W3162884997 @default.
- W4210567336 cites W3213348597 @default.
- W4210567336 cites W4381235546 @default.
- W4210567336 cites W984155368 @default.
- W4210567336 doi "https://doi.org/10.1109/access.2022.3148711" @default.
- W4210567336 hasPublicationYear "2022" @default.
- W4210567336 type Work @default.
- W4210567336 citedByCount "3" @default.
- W4210567336 countsByYear W42105673362023 @default.
- W4210567336 crossrefType "journal-article" @default.
- W4210567336 hasAuthorship W4210567336A5018898545 @default.
- W4210567336 hasAuthorship W4210567336A5032394209 @default.
- W4210567336 hasAuthorship W4210567336A5052190238 @default.
- W4210567336 hasBestOaLocation W42105673361 @default.
- W4210567336 hasConcept C108583219 @default.
- W4210567336 hasConcept C119857082 @default.
- W4210567336 hasConcept C124101348 @default.
- W4210567336 hasConcept C132964779 @default.
- W4210567336 hasConcept C138885662 @default.
- W4210567336 hasConcept C143724316 @default.
- W4210567336 hasConcept C144133560 @default.
- W4210567336 hasConcept C150899416 @default.
- W4210567336 hasConcept C151406439 @default.
- W4210567336 hasConcept C151730666 @default.
- W4210567336 hasConcept C153180895 @default.
- W4210567336 hasConcept C154945302 @default.
- W4210567336 hasConcept C162853370 @default.