Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210587079> ?p ?o ?g. }
- W4210587079 endingPage "162" @default.
- W4210587079 startingPage "153" @default.
- W4210587079 abstract "In recent years, forecasting has received increasing attention since it provides an important basis for the effective operation of power systems. In this paper, a hybrid method, composed of kernel principal component analysis (KPCA), tree seed algorithm based on Lévy flight (LTSA) and extreme learning machine (ELM), is proposed for short-term load forecasting. Specifically, the randomly generated weights and biases of ELM have a significant impact on the stability of prediction results. Therefore, in order to solve this problem, LTSA is utilized to obtain the optimal parameters before the prediction process is executed by ELM, which is called LTSA-ELM. Meanwhile, the input data is extracted by KPCA considering the sparseness of the electric load data and used as the input of LTSA-ELM model. The proposed method is tested on the data from European network on intelligent technologies (EUNITE) and experimental results demonstrate the superiority of the proposed approaches compared to the other methods involved in the paper." @default.
- W4210587079 created "2022-02-08" @default.
- W4210587079 creator A5011080912 @default.
- W4210587079 creator A5018466767 @default.
- W4210587079 creator A5021979312 @default.
- W4210587079 creator A5021989472 @default.
- W4210587079 creator A5030702915 @default.
- W4210587079 creator A5034621241 @default.
- W4210587079 creator A5041388749 @default.
- W4210587079 creator A5072362529 @default.
- W4210587079 creator A5081081539 @default.
- W4210587079 date "2022-03-31" @default.
- W4210587079 modified "2023-10-18" @default.
- W4210587079 title "Forecasting short-term electric load using extreme learning machine with improved tree seed algorithm based on Lévy flight" @default.
- W4210587079 cites W145755714 @default.
- W4210587079 cites W153870454 @default.
- W4210587079 cites W1587559447 @default.
- W4210587079 cites W1969311436 @default.
- W4210587079 cites W1974895230 @default.
- W4210587079 cites W1985080863 @default.
- W4210587079 cites W1986641597 @default.
- W4210587079 cites W2000135657 @default.
- W4210587079 cites W2007034421 @default.
- W4210587079 cites W2022699427 @default.
- W4210587079 cites W2038843869 @default.
- W4210587079 cites W2054142109 @default.
- W4210587079 cites W2056561256 @default.
- W4210587079 cites W2066505698 @default.
- W4210587079 cites W2082095020 @default.
- W4210587079 cites W2085281262 @default.
- W4210587079 cites W2092190400 @default.
- W4210587079 cites W2111072639 @default.
- W4210587079 cites W2209764198 @default.
- W4210587079 cites W2280289566 @default.
- W4210587079 cites W2291002789 @default.
- W4210587079 cites W2346278083 @default.
- W4210587079 cites W237869302 @default.
- W4210587079 cites W2504861291 @default.
- W4210587079 cites W2584696667 @default.
- W4210587079 cites W2591852124 @default.
- W4210587079 cites W2745657436 @default.
- W4210587079 cites W2773828951 @default.
- W4210587079 cites W2778060382 @default.
- W4210587079 cites W2789845700 @default.
- W4210587079 cites W2804609327 @default.
- W4210587079 cites W2883451172 @default.
- W4210587079 cites W2885778707 @default.
- W4210587079 cites W2898202628 @default.
- W4210587079 cites W2902048462 @default.
- W4210587079 cites W2902455635 @default.
- W4210587079 cites W2904957893 @default.
- W4210587079 cites W2907227550 @default.
- W4210587079 cites W2907400411 @default.
- W4210587079 cites W2908202358 @default.
- W4210587079 cites W2911003593 @default.
- W4210587079 cites W2913081107 @default.
- W4210587079 cites W2972337704 @default.
- W4210587079 cites W2972950520 @default.
- W4210587079 cites W3007269060 @default.
- W4210587079 cites W3010981001 @default.
- W4210587079 cites W3106869630 @default.
- W4210587079 cites W3113008830 @default.
- W4210587079 cites W3123622325 @default.
- W4210587079 cites W3156676812 @default.
- W4210587079 cites W3156954244 @default.
- W4210587079 cites W3173982919 @default.
- W4210587079 cites W4250120463 @default.
- W4210587079 cites W2472837954 @default.
- W4210587079 doi "https://doi.org/10.17531/ein.2022.1.17" @default.
- W4210587079 hasPublicationYear "2022" @default.
- W4210587079 type Work @default.
- W4210587079 citedByCount "6" @default.
- W4210587079 countsByYear W42105870792022 @default.
- W4210587079 countsByYear W42105870792023 @default.
- W4210587079 crossrefType "journal-article" @default.
- W4210587079 hasAuthorship W4210587079A5011080912 @default.
- W4210587079 hasAuthorship W4210587079A5018466767 @default.
- W4210587079 hasAuthorship W4210587079A5021979312 @default.
- W4210587079 hasAuthorship W4210587079A5021989472 @default.
- W4210587079 hasAuthorship W4210587079A5030702915 @default.
- W4210587079 hasAuthorship W4210587079A5034621241 @default.
- W4210587079 hasAuthorship W4210587079A5041388749 @default.
- W4210587079 hasAuthorship W4210587079A5072362529 @default.
- W4210587079 hasAuthorship W4210587079A5081081539 @default.
- W4210587079 hasBestOaLocation W42105870791 @default.
- W4210587079 hasConcept C111919701 @default.
- W4210587079 hasConcept C112972136 @default.
- W4210587079 hasConcept C113174947 @default.
- W4210587079 hasConcept C11413529 @default.
- W4210587079 hasConcept C114614502 @default.
- W4210587079 hasConcept C119857082 @default.
- W4210587079 hasConcept C121332964 @default.
- W4210587079 hasConcept C124101348 @default.
- W4210587079 hasConcept C134306372 @default.
- W4210587079 hasConcept C153180895 @default.
- W4210587079 hasConcept C154945302 @default.
- W4210587079 hasConcept C163258240 @default.
- W4210587079 hasConcept C27438332 @default.